Circular Motion

Period and Frequency

- Uniform circular motion
- Constant speed
- Continuously changing direction
- The time interval it takes an object to go around a circle one time, completing revolution is called a PERIOD.
- A period is represented by the symbol T.
- Rather than specify the time for one revolution, we can specify circular motion by its FREQUENCY, the number of revolutions per second, for which the symbol is \boldsymbol{f}.

$$
f=\frac{1}{T}\left(\text { units: } \frac{1}{s} \text { or } s^{-1}\right)
$$

Speed/Velocity in a Circle

Speed is the MAGNITUDE of the velocity. And while the speed may be constant, the VELOCITY is NOT. Since velocity is a vector with BOTH magnitude AND direction, we see that the direction of the velocity is ALWAYS changing.

$$
v(\text { speed })=\frac{2 \pi r}{T}=2 \pi f r
$$

We call this velocity, TANGENTIAL velocity as its direction is draw TANGENT to the circle.

Centripetal Acceleration

Approximating the arc with the chord $\mathrm{S}=\mathrm{v} \Delta \mathrm{t}$

Substituting for s and rearranging gives the Centripetal acceleration

$$
\frac{\Delta v}{\Delta t}=\mathrm{a}=\frac{\mathrm{v}^{2}}{\mathrm{r}}
$$

Centripetal means "center seeking" so that means that the acceleration points towards the CENTER of the circle

Drawing the Directions correctly

So for an object traveling in a counter-clockwise path. The
 velocity would be drawn TANGENT to the circle and the acceleration would be drawn TOWARDS the CENTER.

To find the MAGNITUDES of each we have:

$$
v_{c}=\frac{2 \pi r}{T} \quad a_{c}=\frac{v^{2}}{r}
$$

Examples

The blade of a windshield wiper moves through an angle of 90 degrees in 0.28 seconds. The tip of the blade moves on the arc of a circle that has a radius of 0.76 m . What is the magnitude of the centripetal acceleration of the tip of the blade?
$v_{c}=\frac{2 \pi r}{T}$

$$
\begin{aligned}
& v_{c}=\frac{2 \pi(.76)}{(.28 * 4)}=4.26 \mathrm{~m} / \mathrm{s} \\
& a_{c}=\frac{v^{2}}{r}=\frac{(4.26)^{2}}{0.76}=23.92 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

