Thé astronauts in the upper lefl of
this photo are working on the space
shuttle. As they orbat the Earth—at
a rather high speed—they experi
ence apparent weightlessness, The
Moon, i the background. also is
orbiting the Earth at high speed.

Both the Moon and the space
shuttle move n  nearly circular
orbits, and each wundergoes a

centripetal acceleration. What keeps
the Moon and the space shuttle (and
its astronauts) from moving off in a
straight line away from Earth? It is
the force of gravity. Newton's law of
universal gravitation states that all
objects attract all other abjects with
a force proportional to their masses
and inversely proportional to the
squareg of the distance between
them.
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FIGURE 5-1 A small ohject
moving in & cirele, showing how the
velocity changes. At each point. the
instantaneous velocity is in a direc-
tion tangent 1o the circular path.
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n object moves in a straight line if the net foree on it acts in the direction

of motion, or the net force is zero. If the net foree acts at an angle to the

direction of motion at any moment, then the object moves in a curved
path. An example of the latter is projectile motion, which we discussed in Chapter 3,
Another important case is that of an object moving in a circle. such as a ball at
the end of a string revolving around one’s head, or the nearly circular motion of
the Moon about the Earth.

In this Chapter, we study the circular motion of objects, and how Newton's
laws of motion apply. We also discuss how Newton conceived of another great
law by applying the concepts of circular motion to the motion of the Moon and
the planets. This is the law of universal pravitation, which was the capstone of
Newton’s analysis of the physieal world.

m Kinematics of Uniform Circular Motion

An object that moves in a circle al constant speed v is said to experience
uniform circular motion. The magmiude of the velocity remains constant in this
case, but the direction of the velocity continuously changes as the object moves
around the circle (Fig. 5-1). Because acceleration is defined as the rate of




change of velocity, a change in direction of velocity constitutes an sceeleration,
just as a change in magnitude of veloeity does. Thus, an object revolving in a
circle is continuously accelerating, even when the speed remains constant
(n, = 1, = v). We now invesligate this accelerition quantitatively.

Acceleration is defined as

¥—% OF
ar At

where AV is the change in velocity during the short time interval Ar, We will
eventually consider the situation in which Ar approaches zero and thus obtain
the instantaneous acceleration. But for purposes of making a clear drawing,
Fig, 5-2, we consider a nonzero lime interval. During the time interval Af, the
particle in Fig. 5-2a moves from poinl A lo point B, covering a distance Al
along the are which subtends an angle Af, The change in the velocity vector is
¥, — ¥ = AWV, and is shown in Fig. 5-2b.

If we let Ar be very small (approaching zero). then Al and A# are also
very small, and ¥, will be almost parallel to ¥, ; Av will be essentially perpen-
dicular to them (Fig: 5-2¢). Thus Av points toward the center of the circle.
Since a, by definition. is in the same direction as Av, it too must point toward
the center of the circle. Therefore, this acceleration is called centripetal
acceleration (“center-pointing” acceleration) or radial aceeleration (since it is
directed along the radius, toward the center of the circle), and we denote it
b}" iy,

We next determine the magnitude of the centripetal (radial) acceleration, ay, .
Because CA in Fig. 5-2a is perpendicular to ¥, and CB is perpendicular Lo ¥, it
follows that the angle A8, defined as the angle between CA and CB, is also the
angle between ¥ and ¥;. Hence the vectors ¥, ¥;; and Av in Fig. 5-2b form a
triangle that is geometrically similar” to triangle CAB in Fig. 5-2a. 1f we take Ad
to be very small {letting Ar be very small) and setting v = v, = »; because the
magnitude of the velocity is assumed not to change, we can write

A Al

[ g
= “

v

This is an exact equality when At approaches zero, for then the arc length Al
equals the cord length AB. We want to find the instantaneous acceleration, so
we let At approach zero, write the above expression as an equality, and then
salve for A

Av = = Al
r
Ty get the centripetal acceleration, ay, we divide A» by Ar:
o = DY _ v AL
A A

But Al/At is just the linear speed, ¢, of the object, so

by % (5-1)

Eguation 5-1 is valid even when # is not constant,

FIGURE 5-2 Determining the
change in velocity. A¥, fur a particle
maving in-a ¢ircle. The length Al is the
distance along the arc. from A to B

Coenrripard (veavol ) neocleranem

To summarize, an object moving in a circle of radius r at constant speed v . CAUTION

has an acceleration whose divection is toward the center of the circle and whoxe
magnitude is @, = v /r. 1t is nol surprising that this acceleration depends on v
and r. The greater the speed v, the faster the velocity changes direction; and the
larger the radius, the less rapidly the velocily changes direction,

"Appendix A contains a review of geometry

Far pmef e pivoeddanr mecaiions, (e speed s
evstand, Dot the avovleralion o met 2em
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The acceleration vector points toward the center of the circle. But the
velocity vector always points in the direction of motion, which is tangential to
the eircle. Thus the velocity and aceeleration vectors are perpendicular o each

@ cauTion other at every point in the path for uniform ecircular motion {Fig. 5-3). This is

Uhe divectionof muoman (% and-another example that illustrates the error in thinking that acceleration and

M aevedoration (&) gre nerin veloeity are always in the same direction. For an abject falling vertically, & and

the vate Uivoction; usewd, 4 LV are indeed parallel. But in circular motion, & and ¥ are perpendicular, not
parallel {(nor were they parallel in projectile motion, Section 3-5).

FIGURE 5-3 Fur uniform
circular motion, @ is always
perpendicular to ¥,

Circular motion is often described in terms of the frequency f, the number
ol revolutions per second. The period T of an object revolving in a circle is the
time required for one camplete revolution. Period and frequency are related by

Pertad v fre Qb Y

T=- (5-2)

For example, if an objeet revolves al a frequency of 3 rev/s. then each revolulion
takes s, For an object revolving in a circle (of circumference 2mr) al constant
speed v, we can write

2

¢ =—

T
sinee in one revolution the object travels one circumference.

Acceleration of a revolving ball. A 150-g ball at the end
of a string is revolving uniformly in a horizontal circle of radius 0,600 m. as in
Fig. 5-1 or 5-3, The ball makes 2.00 revolutions in a second. What is its centripetal
acceleration?

APPROACH The centripetal acceleration is ap = »*/r. We are given r, and
we can find the speed of the ball, v, from the given radius and frequency.
SOLUTION 11 the ball makes two complete revolutions per second, then the
ball travels in a complete circle in a time interval equal to 0.500s, which is its
period T. The distance traveled in this time is the circumference of the circle,
2are, where # is the radius of the circle. Therefore, the ball has speed

dme 2(3.14)(0.600 m)
o o 2 _ 2(3.14)(0.600 m)

= — |5 L
T (05005) SO
The centripetal acceleration” is
2 (1.54m/s)
Ay = — =  itduis i 94.7 m /s,

¥ {600 m )

EXERCISE A I the string is doubled in length to 1.20 m but all glse stays the same. by
what Tactor will the centripetal acceleration change?

"Differences in the final digit can depend on whether you keep all digits in your caleulstor for ¢
{which gmves g = 9.7 m/s")oor if youuse v = 734 m/s inwhich case you get ap = %4 8m/s". Both
results arg valid since our assumed aecuracy is about + 4.1 m/s (see Section |4}
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S CU T8 Moon's centripetal acceleration. The Moon's nearly
cireular orbit about the Earth has a radius of about 384,000 km and a period T
of 27.3 days. Determine the acceleration of the Moon toward the Earth.

APPROACH Again we need to find the veloeity v in order to find a; . We will
need to convert to 81 units to get v in m/s,

SOLUTION In one oerbit around the Earth, the Moon travels a distance 27,
where r = 3.84 % 10°m is the radius of its circular path. The time required
for one complete orbit is the Moon’s period of 27.3 d. The speed of the Moon
in its orbit about the Earth is @ = 27r/T. The period T in seconds is
T = (27.3d)(24.0h/d)(3600s/h) = 2.36 x 10°s; Therefore,

o 2oy Axt  4wi3.84 x 10" m)
dy =— = - = —
’ (236 % 10°s)

r Tr  in
= 000272 m/¢’ = 2.72 X 10 m/s%,
We can write this aceeleration in terms of g = 9.80 m/s’ (the acceleration of
gravity at the Earth’s surface) as

§=2T2%107" m,.f'sz( = 278 % 107 g

)
080 m /s )

NOTE The centripetal acceleration of the Moon, @ = 2.78 % 10744, is not
the acceleration of gravity for objects at the Moon’s surface due to the
Moon’s gravity. Rather, it is the acceleration due to the Earth’s gravity for
any object (such as the Moon) that is 384,000 km from the Earth. Notice how
small this acceleration is compared to the acceleration of objects near the
Earth’s surface.

mDynamics of Uniform Circular Motion

According to Newton's second law (EF = mad), an object that is aceelerating
must have a net force acting on it. An object moving in a circle, such as a ball
on the end of a string, must therefore have a force applied 1o it to keep it
moving in that circle, That is, a net force is necessary to give it centripetal
acceleration. The magnitude of the required force can be caleulated using
Newton’s second law for the radial component, £F, = may,, where ay is the
centripetal acceleration, ay ~ o’ fr, and TF; is the total (or net) foree in the
radial direction:

v’
EE = mog = =

[circular motion] (5-3)
For uniform circular motion (# = constant), the acceleration s ay, which is
directed toward the center of the cirele al any moment. Thus the net foree too
musi be directed toward the center of the circle (Fig. 5-4). A net foree is neces-
sary because otherwise, if no net foree were exerted on the object, it would not
move in a circle but in a straight line, as Newton’s first law tells us. The direction
of the net foree is continually changing so that it is always directed toward the
center of the circle. This force is sometimes called a centripetal (“pointing
toward the eenter™) force. But be aware that “centripetal force™ does not indi-
cate some new kind of force. The term merely deseribes the direction of the net
force needed to provide a circular path: the net foree is directed toward the
circle’s center. The force must be applied by other objecis. For example, to swing
a ball in a circle on the end of a string, vou pull on the string and the string
exerts the force on the ball. (Try it.)
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FIGURE 5-4 A force is required
tor keep an object moving in a circle.
IT the speed is constant, the force is
directed toward the circle’s center,
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