\qquad Date: \qquad Period: \qquad

AP Physics 1 - Two Dimensional Force in Equilibrium Quiz ANSWER KEY

1. Three pictures of equal weight (20 N) are hung by wires in three different orientations. In which orientation are the wires least likely to break? \qquad Explain why.

Answer: 60-degree angle to the horizontal

The tension in the wire will have the greatest impact upon its tendency to break. As the wire becomes most vertically oriented, the horizontal component of the tension force is reduced and the tension becomes less. The moral of the story -- to support the weight of a picture, one only needs to pull upwards, not leftwards and rightwards. Of course, the best arrangement would be two wires pulling completely vertically.
2. A $50-\mathrm{N}$ force is applied at an angle of 30 degrees north of east. This would be the same as applying two forces at
A. 43 N , east and 7 N , north
B. 35 N , east and 15 N , north
C. 25 N , east and 25 N , north
D. 43 N , east and 25 N , north

Answer: D

A 50-N force at 30 degrees would have two components - 43 N , east and 25 N , north. These two forces would be equal to the $50-\mathrm{N}$ force at 30 degrees N of E . They are calculated as:

$$
\begin{aligned}
& F_{\text {east }}=(50 \mathrm{~N}) * \cos (30 \mathrm{deg}) \\
& F_{\text {north }}=(50 \mathrm{~N}) * \sin (30 \mathrm{deg})
\end{aligned}
$$

For the next three problem, use the approximation that $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ to fill in the blanks in the following diagrams. Show all of your work.
3.

$F_{\text {grav }}=m \bullet g=\sim 800 \mathrm{~N}$
$\sum F_{y}=m a_{y}=(80 \mathrm{~kg}) \bullet(2.0 \mathrm{~m} / \mathrm{s} / \mathrm{s})$
$\sum F_{y}=160 \mathrm{~N}$, down
The $\mathrm{F}_{\text {grav }}$ (down) and the $\mathrm{F}_{\text {air }}$ (up) must add up to 160 N , down. Thus, $F_{\text {air }}$ must be smaller than $F_{\text {grav }}$ by 160 N.
$F_{\text {air }}=640 \mathrm{~N}$
4.

$$
\mathbf{m}=\sim 70 \mathrm{~kg}
$$

$a=5.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$, left

Since $F_{\text {grav }}=m \bullet g$, m can be calculated to be $\sim 70 \mathrm{~kg}\left(\mathrm{~m}=\mathrm{F}_{\mathrm{grav}} / \mathrm{g}\right)$.
Since $a_{y}=0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$, $\mathrm{F}_{\text {norm }}$ must equal $\mathrm{F}_{\text {grav }}$; so $\mathrm{F}_{\text {norm }}=700 \mathrm{~N}$.
$\sum F_{x}=m \cdot a_{x}=(70 \mathrm{~kg}) \bullet(5.0 \mathrm{~m} / \mathrm{s} / \mathrm{s})$ $\sum F_{x}=350 \mathrm{~N}$, left
(Note that the $\cdot F_{x}$ direction is always the same as the \mathbf{a}_{x} direction.)
With $\mathrm{F}_{\text {app }}$ being the only horizontal force, its value must be $\mathbf{3 5 0} \mathbf{N}$ - the same as $\cdot F_{x}$.
5.

$a=\frac{\mathbf{m}=8 \mathrm{~kg}}{3.4} \mathrm{~m} / \mathrm{s} / \mathrm{s}$, right

A quick blank is $F_{\text {grav }}: F_{\text {grav }}=m \bullet g$ = ~80 N
Now resolve the 60-N force into components using trigonometry and the given angle measure:

$\mathrm{F}_{\mathrm{x}}=60 \mathrm{~N} \cdot \cos (30 \mathrm{deg})=52 \mathrm{~N}$
$F_{y}=60 \mathrm{~N} \cdot \sin (30 \mathrm{deg})=30 \mathrm{~N}$
Since the acceleration is horizontal, the sum of the vertical forces must equal 0 N . So $F_{\text {grav }}=F_{y}+F_{\text {norm }}$.
Therefore $F_{\text {norm }}=F_{\text {grav }}-F_{y}=50 \mathbf{N}$.
Knowing $F_{\text {norm }}$ and $m u$, the $F_{\text {frict }}$ can be determined:
$\mathrm{F}_{\text {frict }}=\mathrm{mu} \bullet \mathrm{F}_{\text {norm }}=0.5^{*}(50 \mathrm{~N})=25 \mathrm{~N}$
Now the horizontal forces can be summed:
$\sum F_{x}=F_{x}+F_{\text {frict }}=52 \mathrm{~N}$, right +25 N , left
$\sum F_{x}=\mathbf{2 7} \mathbf{N}$, right
Using Newton's second law, $\Sigma F_{x}=$ $m \cdot a_{x}$
So $a_{x}=(27 \mathrm{~N}) /(8 \mathrm{~kg})=3.4 \mathrm{~m} / \mathrm{s} / \mathrm{s}$, right

