
Ch. 1 Study Guide Make-up Assignment – Grant (Fall 2014) Due: Wednesday, September 17, 2014

- Express the following quantities in scientific notation.
 - a. 4501 m
 - **b.** 75,000 km
 - c. 6438 g
 - d. 0.6438 g
 - e. 0.00048 s
 - f. 24 h
- Convert each of the following quantities as indicated.
 - a. 3600 cm to meters
 - b. 5000 m to kilometers
 - c. 5000 km to meters
 - d. 15 kg to grams
 - e. 1.5 mg to grams
- Write the conversion factor for each of the following conversions.
 - a. mL to liters
 - b. kg to grams
 - c. nm to meters
 - **d.** μ g to grams
 - e. km/s^2 to m/s^2
- Calculate each of the following and express the results in scientific notation with the correct number of significant digits and correct units.
 - **a.** 4.098 m + 56.03 m + 10.2 m =
 - **b.** 603 km/1000 s =
 - **c.** $4.000 \text{ m} \times 20.30 \text{ m} =$
 - **d.** 5.5×10^{-1} mm + 2.0×10^{-3} mm =

- **5.** On Earth, the force of gravity on an object is expressed as $F = m \times g$, where F is the force applied on the object, m is the mass of the object, and g is the gravitational constant, which is 9.80 m/s².
 - a. What are the units of the force of gravity if the mass is expressed in kilograms?
 - Calculate the gravitational force on an object with a mass of 10.32 kg.
- State the number of significant digits in each of the following measurements and express the value in scientific notation.
 - **a.** 903 kg
 - **b.** 600.00 m
 - c. 0.0030 mm
 - **d.** $8.030 \times 10^{-4} \text{ J}$
 - **e.** 38.60×10^{-3} m/s
- The figure below shows a graph of the mass of a substance compared to its volume.
 - a. What type of relationship is mass versus volume?
 - b. What is the volume of 6.0 kg of the substance?
 - c. What is the mass of each liter of the substance?

- The surface of a rectangular table is measured as 2.24 m long and 1.103 m wide.
 - a. Calculate the perimeter of the tabletop.
 - **b.** Calculate the area of the tabletop.
 - c. What is the area of the tabletop, expressed in square centimeters?
- 9. As a pump transfers water into a cylindrical tank, the mass of water in the tank is measured on a balance. Table 1-1 shows the mass of water in the tank and its depth.
 - a. Plot the values given in the table and draw a curve that best fits all the points.
 - b. Describe the resulting curve.
 - c. Write an equation relating the depth of water in the tank to the mass of water.
 - d. What is the slope of the line in your graph?
 - e. Why is the value for the mass of water measured at 40 cm not exactly twice the value measured at 20 cm?

Table 1-1		
Depth of Water (cm)	Mass of Water (kg)	
10	75	
20	149	
30	225	
40	302	
50	376	
60	453	

- 10. A student measures the mass of a standard set of calibration weights on a triple-beam balance and an electronic balance, obtaining the data in Table 1-2.
 - a. Which set of results is more precise? Explain your answer.
 - b. Which set of results is more accurate? Explain your answer.

Table 1-2		
Standard Value	Triple-Beam Balance	Electronic Balance
1.000 g	1.001 g	1.1033 g
2.000 g	2.002 g	2.1033 g
3.000 g	3.001 g	3.1034 g
5.000 g	5.000 g	5.1033 g

- Add or subtract as indicated. Make sure that your answers contain the correct number of significant digits.
 - a. 0.00039 mm + 0.0025 mm
 - **b.** 2103 s 2.4 s
 - **c.** $2.3 \times 10^{-4} \text{ kg} + 6.7 \times 10^{-3} \text{ kg}$
 - **d.** $5.85 \times 10^3 \text{ m} 5.2 \times 10^2 \text{ m}$
- Multiply or divide as indicated. Make sure your answers contain the correct number of significant digits.
 - **a.** $(2.21 \text{ kg})(100.0 \text{ m/s}^2)$
 - **b.** $\frac{3.3\times10^{-5} \text{ m}}{6.55\times10^{-6} \text{ s}}$
 - **c.** $\frac{200.0 \text{ cm}^2}{1.23 \text{ cm}}$
 - **d.** $(7.89 \times 10^4 \text{ km})(3 \times 10^2 \text{ km})$