
What You’ll Learn
• You will examine vibrational

motion and learn how it
relates to waves.

• You will determine how
waves transfer energy. 

• You will describe wave
behavior and discuss its
practical significance.

Why It’s Important
Knowledge of the behavior
of vibrations and waves 
is essential to the
understanding of resonance
and how safe buildings and
bridges are built, as well 
as how communications
through radio and television
are achieved. 

“Galloping Gertie”
Shortly after it was opened
to traffic, the Tacoma
Narrows Bridge near
Tacoma, Washington, began
to vibrate whenever the
wind blew (see inset). One
day, the oscillations became
so large that the bridge
broke apart and collapsed
into the water below.

Think About This �
How could a light wind
cause the bridge in the 
inset photo to vibrate with
such large waves that it
eventually collapsed?
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How do waves behave in a coiled spring?
Question
How do pulses that are sent down a coiled spring behave when the other end of 
the spring is stationary?

Procedure

1. Stretch out a coiled spiral spring, but do not
overstretch it. One person should hold one
end still, while the other person generates a
sideways pulse in the spring. Observe the
pulse while it travels along the spring and 
when it hits the held end. Record your
observations.

2. Repeat step 1 with a larger pulse. Record 
your observations.

3. Generate a different pulse by compressing 
the spring at one end and letting go. Record
your observations.

4. Generate a third type of pulse by twisting 
one end of the spring and then releasing it.
Record your observations.

Analysis

What happens to the pulses as they travel
through the spring? What happens as they 
hit the end of the spring? How did the pulse in
step 1 compare to that generated in step 2?

Critical Thinking What are some properties
that seem to control how a pulse moves through
the spring?

14.1 Periodic Motion

� Objectives
• Describe the force in an

elastic spring. 

• Determine the energy
stored in an elastic spring.

• Compare simple harmonic
motion and the motion 
of a pendulum.

� Vocabulary

periodic motion
simple harmonic motion
period
amplitude
Hooke’s law
pendulum
resonance

You’ve probably seen a clock pendulum swing back and forth. You
would have noticed that every swing followed the same path, and

each trip back and forth took the same amount of time. This action is an
example of vibrational motion. Other examples include a metal block bob-
bing up and down on a spring and a vibrating guitar string. These motions,
which all repeat in a regular cycle, are examples of periodic motion.

In each example, the object has one position at which the net force on
it is zero. At that position, the object is in equilibrium. Whenever the
object is pulled away from its equilibrium position, the net force on 
the system becomes nonzero and pulls the object back toward equilib-
rium. If the force that restores the object to its equilibrium position is
directly proportional to the displacement of the object, the motion that
results is called simple harmonic motion.

Two quantities describe simple harmonic motion. The period, T, is the
time needed for an object to repeat one complete cycle of the motion, and
the amplitude of the motion is the maximum distance that the object
moves from equilibrium.

Section 14.1 Periodic Motion 375
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The Mass on a Spring
How does a spring react to a force that is applied

to it? Figure 14-1a shows a spring hanging from a
support with nothing attached to it. The spring
does not stretch because no external force is
exerted on it. Figure 14-1b shows the same spring
with an object of weight mg hanging from it. The
spring has stretched by distance x so that the
upward force it exerts balances the downward force
of gravity acting on the object. Figure 14-1c shows
the same spring stretched twice as far, 2x, to support
twice the weight, 2mg, hanging from it. Hooke’s
law states that the force exerted by a spring is
directly proportional to the amount that the spring

is stretched. A spring that acts in this way is said to obey Hooke’s law,
which can be expressed by the following equation. 

In this equation, k is the spring constant, which depends on the stiffness
and other properties of the spring, and x is the distance that the spring is
stretched from its equilibrium position. Not all springs obey Hooke’s law,
but many do. Those that do are called elastic.

Potential energy When a force is applied to stretch a spring, such as by
hanging an object on its end, there is a direct linear relationship between
the exerted force and the displacement, as shown by the graph in Figure
14-2. The slope of the graph is equal to the spring constant, given in units
of newtons per meter. The area under the curve represents the work done
to stretch the spring, and therefore equals the elastic potential energy that
is stored in the spring as a result of that work. The base of the triangle is x,
and the height is the force, which, according to the equation for Hooke’s
law, is equal to kx, so the potential energy in the spring is given by the 
following equation.

The units of the area, and thus, of the potential energy, are newton·meters,
or joules.

How does the net force depend upon position? When an object hangs on
a spring, the spring stretches until its upward force, Fsp, balances 
the object’s weight, Fg, as shown in Figure 14-3a. The block is then in its
equilibrium position. If you pull the object down, as in Figure 14-3b, the
spring force increases, until it balances the forces exerted by your hand and
gravity. When you let go of the object, it accelerates in the upward direction,
as in Figure 14-3c. However, as the stretch of the spring is reduced, the

Potential Energy in a Spring PEsp � �
1
2

�kx2

The potential energy in a spring is equal to one-half times the product of the
spring constant and the square of the displacement.

Hooke’s Law F � �kx

The force exerted by a spring is equal to the spring constant times the
distance the spring is compressed or stretched from its equilibrium position.

376 Chapter 14 Vibrations and Waves

2mg

mg

0 m

x m

2x m

0

F (N)

x (m)

■ Figure 14-1 The force exerted
by a spring is directly proportional
to the distance the spring is
stretched.

■ Figure 14-2 The spring constant
of a spring can be determined
from the graph of force versus
displacement of the spring.

a b c
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Section 14.1 Periodic Motion 377

The Spring Constant and the Energy in a Spring A spring stretches by 18 cm when a 

bag of potatoes weighing 56 N is suspended from its end.

a. Determine the spring constant.

b. How much elastic potential energy is stored in the spring when it is stretched this far?

Analyze and Sketch the Problem
• Sketch the situation. 
• Show and label the distance that the spring has stretched and 

its equilibrium position.

Known: Unknown:

x � 18 cm k � ?
F � 56 N PEsp � ?

Solve for the Unknown
a. Use F � �kx and solve for k.

k � �
F
x

�

� �
0
5
.1
6
8
N
m

� Substitute F � 56 N, x � 0.18 m

� 310 N/m

b. PEsp � �
1
2

�kx2

� �
1
2

� (310 N/m)(0.18 m)2 Substitute k � 310 N/m, x � 0.18 m

� 5.0 J

Evaluate the Answer
• Are the units correct? N/m are the correct units for the spring constant. 

(N/m)(m2) � N�m � J, which is the correct unit for energy.
• Is the magnitude realistic? The spring constant is consistent with a scale used, 

for example, to weigh groceries. The energy of 5.0 J is equal to the value obtained 
from W � Fx � mgh, when the average force of 28 N is applied. 

3

The minus sign can be dropped because
it just means that the force is restoring.

2

1

a

Fsp

Fg

a = 0 m/s2 a = 0 m/s2

Fsp

Fg

a

Fsp

Fg

a = 0 m/s2

Fsp

Fg

Fsp

Fg

18 cm

0 m

56 N

■ Figure 14-3 Simple harmonic
motion is demonstrated by the
vibrations of an object hanging 
on a spring.

upward force decreases. In Figure 14-3d, the upward force of the spring
and the object’s weight are equal—there is no acceleration. Because there
is no net force, the object continues its upward velocity, moving above the
equilibrium position. In Figure 14-3e, the net force is in the direction
opposite the displacement of the object and is directly proportional to the
displacement, so the object moves with a simple harmonic motion. The
object returns to the equilibrium position, as in Figure 14-3f.

Math Handbook

Operations with 
Significant Digits
pages 835—836
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378 Chapter 14 Vibrations and Waves

Fg

Fg Fg

FTFT

FT

Fnet Fnet

■ Figure 14-4 Fnet, the vector sum
of Ft and Fg, is the restoring force
for the pendulum.

When the external force holding the object is released, as in Figure 14-3c,
the net force and the acceleration are at their maximum, and the velocity
is zero. As the object passes through the equilibrium point, Figure 14-3d,
the net force is zero, and so is the acceleration. Does the object stop? No,
it would take a net downward force to slow the object, and that will not
exist until the object rises above the equilibrium position. When the object
comes to the highest position in its oscillation, the net force and the accel-
eration are again at their maximum, and the velocity is zero. The object
moves down through the equilibrium position to its starting point and
continues to move in this vibratory manner. The period of oscillation, T,
depends upon the mass of the object and the strength of the spring. 

Automobiles Elastic potential energy is an important part of the design
and building of today’s automobiles. Every year, new models of cars are
tested to see how well they withstand damage when they crash into barri-
cades at low speeds. A car’s ability to retain its integrity depends upon how
much of the kinetic energy it had before the crash can be converted into
the elastic potential energy of the frame after the crash. Many bumpers are
modified springs that store energy as a car hits a barrier in a slow-speed
collision. After the car stops and the spring is compressed, the spring
returns to its equilibrium position, and the car recoils from the barrier.

Pendulums
Simple harmonic motion also can be demonstrated by the swing of a

pendulum. A simple pendulum consists of a massive object, called the
bob, suspended by a string or light rod of length l. After the bob is pulled
to one side and released, it swings back and forth, as shown in Figure 14-4.
The string or rod exerts a tension force, FT, and gravity exerts a force, Fg, on
the bob. The vector sum of the two forces produces the net force, shown at
three positions in Figure 14-4. At the left and right positions shown in
Figure 14-4, the net force and acceleration are maximum, and the velocity
is zero. At the middle position in Figure 14-4, the net force and accelera-
tion are zero, and the velocity is maximum. You can see that the net force
is a restoring force; that is, it is opposite the direction of the displacement
of the bob and is trying to restore the bob to its equilibrium position.

1. How much force is necessary to stretch a spring 0.25 m when the
spring constant is 95 N/m?

2. A spring has a spring constant of 56 N/m. How far will it stretch
when a block weighing 18 N is hung from its end?

3. What is the spring constant of a spring that stretches 12 cm when 
an object weighing 24 N is hung from it?

4. A spring with a spring constant of 144 N/m is compressed by a
distance of 16.5 cm. How much elastic potential energy is stored in
the spring?

5. A spring has a spring constant of 256 N/m. How far must it be
stretched to give it an elastic potential energy of 48 J?

Personal Tutor For an online tutorial on
pendulums and vector resolution, visit
physicspp.com.
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Section 14.1 Periodic Motion 379

6. What is the period on Earth of a pendulum with a length of 1.0 m?

7. How long must a pendulum be on the Moon, where g � 1.6 m/s2, to
have a period of 2.0 s?

8. On a planet with an unknown value of g, the period of a 0.75-m-long
pendulum is 1.8 s. What is g for this planet?

For small angles (less than about 15°) the restoring force is proportional
to the displacement, so the movement is simple harmonic motion. The
period of a pendulum is given by the following equation. 

Notice that the period depends only upon the length of the pendulum and
the acceleration due to gravity, not on the mass of the bob or the ampli-
tude of oscillation. One application of the pendulum is to measure g,
which can vary slightly at different locations on Earth.

Period of a Pendulum T � 2���
g
l
��

The period of a pendulum is equal to two pi times the square root of the
length of the pendulum divided by the acceleration due to gravity.

Finding g Using a Pendulum A pendulum with a length of 36.9 cm has 

a period of 1.22 s. What is the acceleration due to gravity at the 

pendulum’s location?

Analyze and Sketch the Problem
• Sketch the situation. 
• Label the length of the pendulum.

Known: Unknown:

l � 36.9 cm g � ?
T � 1.22 s

Solve for the Unknown

T � 2���
g
l
��

Solve for g.

g � �
(2

T
�

2
)2l
�

� �
4�

(

2

1
(
.
0
2
.
2
36

s
9
)2

m)
� Substitute l � 0.369 m, T � 1.22 s

� 9.78 m/s2

Evaluate the Answer
• Are the units correct? m/s2 are the correct units for acceleration. 
• Is the magnitude realistic? The calculated value of g is quite close 

to the standard value of g, 9.80 m/s2. This pendulum could be at a high 
elevation above sea level.

3

2

1

Math Handbook

Isolating a Variable
page 845

36.9 cm
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380 Chapter 14 Vibrations and Waves

9. Hooke’s Law Two springs look alike but have dif-
ferent spring constants. How could you determine
which one has the greater spring constant?

10. Hooke’s Law Objects of various weights are hung
from a rubber band that is suspended from a hook.
The weights of the objects are plotted on a graph
against the stretch of the rubber band. How can
you tell from the graph whether or not the rubber
band obeys Hooke’s law?

11. Pendulum How must the length of a pendulum be
changed to double its period? How must the length
be changed to halve the period?

12. Energy of a Spring What is the difference between
the energy stored in a spring that is stretched 
0.40 m and the energy stored in the same spring
when it is stretched 0.20 m?

13. Resonance If a car’s wheel is out of balance, the
car will shake strongly at a specific speed, but not
when it is moving faster or slower than that speed.
Explain.

14. Critical Thinking How is uniform circular motion
similar to simple harmonic motion? How are they
different? 

14.1 Section Review

physicspp.com/self_check_quiz

A car of mass m rests at the top of a hill of height h before rolling
without friction into a crash barrier located at the bottom of the hill. 
The crash barrier contains a spring with a spring constant, k, which is
designed to bring the car to rest with minimum damage.

1. Determine, in terms of m, h, k, and g, the maximum distance, x, that the
spring will be compressed when the car hits it.

2. If the car rolls down a hill that is twice as high, how much farther will the
spring be compressed?

3. What will happen after the car has been brought to rest?

Resonance 
To get a playground swing going, you “pump” it by leaning back and

pulling the chains at the same point in each swing, or a friend gives you
repeated pushes at just the right times. Resonance occurs when small
forces are applied at regular intervals to a vibrating or oscillating object
and the amplitude of the vibration increases. The time interval between
applications of the force is equal to the period of oscillation. Other famil-
iar examples of resonance include rocking a car to free it from a snowbank
and jumping rhythmically on a trampoline or a diving board. The large-
amplitude oscillations caused by resonance can create stresses. Audiences
in theater balconies, for example, sometimes damage the structures by
jumping up and down with a period equal to the natural oscillation period
of the balcony.

Resonance is a special form of simple harmonic motion in which the
additions of small amounts of force at specific times in the motion of 
an object cause a larger and larger displacement. Resonance from wind,
combined with the design of the bridge supports, may have caused the
original Tacoma Narrows Bridge to collapse.

� Foucault Pendulum A
Foucault pendulum has a long
wire, about 16 m in length, with a
heavy weight of about 109 kg
attached to one end. According to
Newton’s first law of motion, a
swinging pendulum will keep
swinging in the same direction
unless it is pushed or pulled in
another direction. However,
because Earth rotates every 24 h
underneath the pendulum, to an
observer it would seem as though
the pendulum’s direction of swing
has changed. To demonstrate this,
pegs are arranged in a circle on
the floor beneath so that the
swinging pendulum will knock
them down as the floor rotates. 
At the north pole, this apparent
rotation would be 15°/h. �
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Section 14.2 Wave Properties 381

� Objectives
• Identify how waves transfer

energy without transferring
matter. 

• Contrast transverse and
longitudinal waves. 

• Relate wave speed,
wavelength, and frequency.

� Vocabulary

wave
wave pulse
periodic wave
transverse wave
longitudinal wave
surface wave
trough
crest
wavelength
frequency

14.2 Wave Properties

Both particles and waves carry energy, but there is an important differ-
ence in how they do this. Think of a ball as a particle. If you toss the

ball to a friend, the ball moves from you to your friend and carries energy.
However, if you and your friend hold the ends of a rope and you give your
end a quick shake, the rope remains in your hand. Even though no matter
is transferred, the rope still carries energy through the wave that you created.
A wave is a disturbance that carries energy through matter or space. 

You have learned how Newton’s laws of motion and principles of 
conservation of energy govern the behavior of particles. These laws and
principles also govern the motion of waves. There are many kinds of waves
that transmit energy, including the waves you cannot see.

Mechanical Waves
Water waves, sound waves, and the waves that travel down a rope or

spring are types of mechanical waves. Mechanical waves require a medium,
such as water, air, ropes, or a spring. Because many other waves cannot be
directly observed, mechanical waves can serve as models.

Transverse waves The two disturbances shown in Figure 14-5a are
called wave pulses. A wave pulse is a single bump or disturbance that trav-
els through a medium. If the wave moves up and down at the same rate, 
a periodic wave is generated. Notice in Figure 14-5a that the rope is dis-
turbed in the vertical direction, but the pulse travels horizontally. A wave
with this type of motion is called a transverse wave. A transverse wave is
one that vibrates perpendicular to the direction of the wave’s motion.

Longitudinal waves In a coiled-spring toy, you can create a wave pulse in
a different way. If you squeeze together several turns of the coiled-spring
toy and then suddenly release them, pulses of closely-spaced turns will
move away in both directions, as shown in Figure 14-5b. This is called a
longitudinal wave. The disturbance is in the same direction as, or parallel
to, the direction of the wave’s motion. Sound waves are longitudinal
waves. Fluids usually transmit only longitudinal waves.

■ Figure 14-5 A quick shake of 
a rope sends out transverse wave
pulses in both directions (a). The
squeeze and release of a coiled-
spring toy sends out longitudinal
wave pulses in both directions (b).

a b
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Wave motionCrest

Trough

■ Figure 14-6 Surface waves
have properties of both transverse
and longitudinal waves (a). The
paths of the individual particles
are circular (b).

■ Figure 14-7 These two
photographs were taken 0.20 s
apart. During that time, the crest
moved 0.80 m. The velocity of the
wave is 4.0 m/s.

a b

Surface waves Waves that are deep in a lake or ocean are longitudinal; at
the surface of the water, however, the particles move in a direction that is
both parallel and perpendicular to the direction of wave motion, as shown
in Figure 14-6. Each of the waves is a surface wave, which has character-
istics of both transverse and longitudinal waves. The energy of water waves
usually comes from distant storms, whose energy initially came from the
heating of Earth by solar energy. This energy, in turn, was carried to Earth
by transverse electromagnetic waves from the Sun.

Measuring a Wave
There are many ways to describe or measure a wave. Some characteris-

tics depend on how the wave is produced, whereas others depend on the
medium through which the wave travels.

Speed How fast does a wave move? The speed of the pulse shown in
Figure 14-7 can be found in the same way as the speed of a moving car 
is determined. First, measure the displacement of the wave peak, �d, 
then divide this by the time interval, �t, to find the speed, given by 
v � �d/�t. The speed of a periodic wave can be found in the same way. For
most mechanical waves, both transverse and longitudinal, the speed
depends only on the medium through which the waves move.

Amplitude How does the pulse generated by gently shaking a rope differ
from the pulse produced by a violent shake? The difference is similar to 
the difference between a ripple in a pond and an ocean breaker: they 
have different amplitudes. You have learned that the amplitude of a wave
is the maximum displacement of the wave from its position of rest, or
equilibrium. Two similar waves having different amplitudes are shown in
Figure 14-8.

A wave’s amplitude depends on how it is generated, but not on its speed.
More work must be done to generate a wave with a greater amplitude. For
example, strong winds produce larger water waves than those formed 
by gentle breezes. Waves with greater amplitudes transfer more energy.

(t)CORBIS, (others)Tom Pantages
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Vibrating
blade

P

P

P

P

■ Figure 14-9 One end of a
string, with a piece of tape at
point P, is attached to a blade
vibrating 25 times per second.
Note the change in position of
point P over time.

Whereas a small wave might move sand on a beach a
few centimeters, a giant wave can uproot and move a
tree. For waves that move at the same speed, the rate at
which energy is transferred is proportional to the square
of the amplitude. Thus, doubling the amplitude of a
wave increases the amount of energy it transfers each
second by a factor of 4.

Wavelength Rather than focusing on one point on a
wave, imagine taking a snapshot of the wave so that 
you can see the whole wave at one instant in time.
Figure 14-8 shows each low point, called a trough, and
each high point, called a crest, of a wave. The shortest
distance between points where the wave pattern repeats
itself is called the wavelength. Crests are spaced by one wavelength. Each
trough also is one wavelength from the next. The Greek letter lambda, �,
represents wavelength.

Phase Any two points on a wave that are one or more whole wavelengths
apart are in phase. Particles in the medium are said to be in phase with one
another when they have the same displacement from equilibrium and the
same velocity. Particles in the medium with opposite displacements and
velocities are 180° out of phase. A crest and a trough, for example, are 180°
out of phase with each other. Two particles in a wave can be anywhere
from 0° to 180° out of phase with one another.

Period and frequency Although wave speed and amplitude can describe
both pulses and periodic waves, period, T, and frequency, f, apply only to
periodic waves. You have learned that the period of a simple harmonic
oscillator, such as a pendulum, is the time it takes for the motion of the
oscillator to complete one cycle. Such an oscillator is usually the source, or
cause, of a periodic wave. The period of a wave is equal to the period of the
source. In Figures 14-9a through 14-9d, the period, T, equals 0.04 s,
which is the time it takes the source to complete one cycle. The same time
is taken by P, a point on the rope, to return to its initial phase.

D
is

p
la

ce
m

en
t

Wave A

Wave B

Trough

Crest
Amplitude

�

■ Figure 14-8 The amplitude of
wave A is larger than that of 
wave B.

d
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c
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0.3
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■ Figure 14-10 Waves can be
represented by graphs. The
wavelength of this wave is 4.0 m
(a). The period is 2.0 s (b). The
amplitude, or displacement, is 
0.2 m in both graphs. If these
graphs represent the same wave,
what is its speed? 

The frequency of a wave, f, is the number of complete oscillations it makes
each second. Frequency is measured in hertz. One hertz (Hz) is one oscilla-
tion per second. The frequency and period of a wave are related by the 
following equation. 

Both the period and the frequency of a wave depend only on its source.
They do not depend on the wave’s speed or the medium.

Although you can directly measure a wavelength, the wavelength
depends on both the frequency of the oscillator and the speed of the wave.
In the time interval of one period, a wave moves one wavelength.
Therefore, the wavelength of a wave is the speed multiplied by the period,
� � vT. Because the frequency is usually more easily found than the 
period, this equation is most often written in the following way. 

Picturing waves If you took a snapshot of a transverse wave on a spring,
it might look like one of the waves shown in Figure 14-8. This snapshot
could be placed on a graph grid to show more information about the wave,
as in Figure 14-10a. Similarly, if you record the motion of a single parti-
cle, such as point P in Figure 14-9, that motion can be plotted on a 
displacement-versus-time graph, as in Figure 14-10b. The period is found
using the time axis of the graph. Longitudinal waves can also be depicted
by graphs, where the y-axis could represent pressure, for example.

Wavelength � � �
v
f
�

The wavelength of a wave is equal to the velocity divided by the frequency.

Frequency of a Wave f � �
1
T

�

The frequency of a wave is equal to the reciprocal of the period.

a

b
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Characteristics of a Wave A sound wave has a frequency of 192 Hz and travels 

the length of a football field, 91.4 m, in 0.271 s.

a. What is the speed of the wave? 

b. What is the wavelength of the wave?

c. What is the period of the wave?

d. If the frequency was changed to 442 Hz, what would be the new wavelength 

and period?

Analyze and Sketch the Problem
• Draw a model of the football field. 
• Diagram a velocity vector.

Known: Unknown:

f � 192 Hz v � ?
d � 91.4 m � � ?
t � 0.271 s T � ?

Solve for the Unknown
a. Solve for v.

v � �
d
t
�

� �
0
9
.
1
2
.
7
4
1
m
s

� Substitute d � 91.4 m, t � 0.271 s 

� 337 m/s

b. Solve for �.

� � �
v
f
�

� �
3
1
3
9
7
2
m
H

/
z
s

� Substitute v � 337 m/s, f � 192 Hz

� 1.76 m

c. Solve for T.

T � �
1
f
�

� �
192

1
Hz
� Substitute f � 192 Hz

� 0.00521 s

d. � � �
v
f
�

� �
3
4
3
4
7
2
m
H

/
z
s

� Substitute v � 337 m/s, f � 442 Hz

� 0.762 m

T � �
1
f
�

� �
442

1
Hz
� Substitute f � 442 Hz

� 0.00226 s

Evaluate the Answer
• Are the units correct? Hz has the units s�1, so (m/s)/Hz � (m/s)�s � m, 

which is correct. 
• Are the magnitudes realistic? A typical sound wave travels approximately 

343 m/s, so 337 m/s is reasonable. The frequencies and periods are reasonable 
for sound waves. 442 Hz is close to a 440-Hz A above middle-C on a piano.

3

2

1
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22. Speed in Different Media If you pull on one end
of a coiled-spring toy, does the pulse reach the
other end instantaneously? What happens if you
pull on a rope? What happens if you hit the end of
a metal rod? Compare and contrast the pulses
traveling through these three materials.

23. Wave Characteristics You are creating trans-
verse waves in a rope by shaking your hand from
side to side. Without changing the distance that
your hand moves, you begin to shake it faster and
faster. What happens to the amplitude, wavelength,
frequency, period, and velocity of the wave?

24. Waves Moving Energy Suppose that you and
your lab partner are asked to demonstrate that a
transverse wave transports energy without trans-
ferring matter. How could you do it?

25. Longitudinal Waves Describe longitudinal waves.
What types of media transmit longitudinal waves?

26. Critical Thinking If a raindrop falls into a pool, it
creates waves with small amplitudes. If a swimmer
jumps into a pool, waves with large amplitudes are
produced. Why doesn’t the heavy rain in a thun-
derstorm produce large waves?

14.2 Section Review

15. A sound wave produced by a clock chime is heard 515 m away 
1.50 s later.

a. What is the speed of sound of the clock’s chime in air?

b. The sound wave has a frequency of 436 Hz. What is the period
of the wave?

c. What is the wave’s wavelength?

16. A hiker shouts toward a vertical cliff 465 m away. The echo is heard
2.75 s later. 

a. What is the speed of sound of the hiker’s voice in air?

b. The wavelength of the sound is 0.750 m. What is its frequency?

c. What is the period of the wave?

17. If you want to increase the wavelength of waves in a rope, should
you shake it at a higher or lower frequency? 

18. What is the speed of a periodic wave disturbance that has a
frequency of 3.50 Hz and a wavelength of 0.700 m?

19. The speed of a transverse wave in a string is 15.0 m/s. If a source
produces a disturbance that has a frequency of 6.00 Hz, what is 
its wavelength?

20. Five pulses are generated every 0.100 s in a tank of water. What is
the speed of propagation of the wave if the wavelength of the
surface wave is 1.20 cm? 

21. A periodic longitudinal wave that has a frequency of 20.0 Hz 
travels along a coil spring. If the distance between successive
compressions is 0.600 m, what is the speed of the wave?

You probably have been intuitively aware that waves carry energy that
can do work. You may have seen the massive damage done by the huge
storm surge of a hurricane or the slower erosion of cliffs and beaches done
by small, everyday waves. It is important to remember that while the
amplitude of a mechanical wave determines the amount of energy it 
carries, only the medium determines the wave’s speed.
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� Objectives
• Relate a wave’s speed to the

medium in which the wave
travels. 

• Describe how waves are
reflected and refracted at
boundaries between media. 

• Apply the principle of
superposition to the
phenomenon of interference.

� Vocabulary

incident wave
reflected wave
principle of superposition
interference
node
antinode
standing wave
wave front
ray
normal
law of reflection
refraction

14.3 Wave Behavior

When a wave encounters the boundary of the medium in which it
is traveling, it often reflects back into the medium. In other

instances, some or all of the wave passes through the boundary into
another medium, often changing direction at the boundary. In addition,
many properties of wave behavior result from the fact that two or 
more waves can exist in the same medium at the same time—quite unlike
particles.

Waves at Boundaries
Recall from Section 14.2 that the speed of a mechanical wave depends

only on the properties of the medium it passes through, not on the wave’s
amplitude or frequency. For water waves, the depth of the water affects
wave speed. For sound waves in air, the temperature affects wave speed. For
waves on a spring, the speed depends upon the spring’s tension and mass
per unit length.

Examine what happens when a wave moves across a boundary from one
medium into another, as in two springs of different thicknesses joined
end-to-end. Figure 14-11 shows a wave pulse moving from a large spring
into a smaller one. The wave that strikes the boundary is called the 
incident wave. One pulse from the larger spring continues in the smaller
spring, but at the specific speed of waves traveling through the smaller
spring. Note that this transmitted wave pulse remains upward.

Some of the energy of the incident wave’s pulse is reflected backward
into the larger spring. This returning wave is called the reflected wave.
Whether or not the reflected wave is upright or inverted depends on the
characteristics of the two springs. For example, if the waves in the smaller
spring have a higher speed because the spring is heavier or stiffer, then the
reflected wave will be inverted.

a

b

■ Figure 14-11 The junction of 
the two springs is a boundary
between two media. A pulse
reaching the boundary (a) is
partially reflected and partially
transmitted (b).

Tom Pantages
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388 Chapter 14 Vibrations and Waves

a b

■ Figure 14-12 A pulse
approaches a rigid wall (a) and 
is reflected back (b). Note that
the amplitude of the reflected
pulse is nearly equal to the
amplitude of the incident pulse,
but it is inverted.
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What happens if the boundary is a wall rather than another spring?
When a wave pulse is sent down a spring connected to a rigid wall, the
energy transmitted is reflected back from the wall, as shown in Figure 14-12.
The wall is the boundary of a new medium through which the wave
attempts to pass. Instead of passing through, the pulse is reflected from the
wall with almost exactly the same amplitude as the pulse of the incident
wave. Thus, almost all the wave’s energy is reflected back. Very little energy
is transmitted into the wall. Also note that the pulse is inverted. If the
spring were attached to a loose ring around a pole, a free-moving bound-
ary, the wave would not be inverted.

Superposition of Waves
Suppose a pulse traveling down a spring meets a reflected pulse coming

back. In this case, two waves exist in the same place in the medium at the
same time. Each wave affects the medium independently. The principle of
superposition states that the displacement of a medium caused by two 
or more waves is the algebraic sum of the displacements caused by the
individual waves. In other words, two or more waves can combine to form
a new wave. If the waves move in opposite directions, they can cancel or
form a new wave of lesser or greater amplitude. The result of the superpo-
sition of two or more waves is called interference.

a b c

Interactive Figure To see an 
animation on wave interference, visit
physicspp.com.

■ Figure 14-13 When two equal
pulses meet, there is a point,
called the node (N), where the
medium remains undisturbed (a).
Constructive interference results
in maximum interference at the
antinode (A) (b). If the opposite
pulses have unequal amplitudes,
cancellation is incomplete (c).

Tom Pantages
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Wave interference Wave interference can be either constructive or
destructive. When two pulses with equal but opposite amplitudes meet,
the displacement of the medium at each point in the overlap region is
reduced. The superposition of waves with equal but opposite amplitudes
causes destructive interference, as shown in Figure 14-13a. When the
pulses meet and are in the same location, the displacement is zero. Point N,
which does not move at all, is called a node. The pulses continue to move
and eventually resume their original form. 

Constructive interference occurs when wave displacements are in the
same direction. The result is a wave that has an amplitude greater than
those of any of the individual waves. Figure 14-13b shows the construc-
tive interference of two equal pulses. A larger pulse appears at point A
when the two waves meet. Point A has the largest displacement and is
called the antinode. The two pulses pass through each other without
changing their shapes or sizes. If the pulses have unequal amplitudes, the
resultant pulse at the overlap is the algebraic sum of the two pulses, as
shown in Figure 14-13c.

Standing waves You can apply the concept of superimposed waves to the
control of the formation of large amplitude waves. If you attach one end
of a rope or coiled spring to a fixed point, such as a doorknob, and then
start to vibrate the other end, the wave leaves your hand, is reflected at the
fixed end, is inverted, and returns to your hand. When it reaches your
hand, the reflected wave is inverted and travels back down the rope. Thus,
when the wave leaves your hand the second time, its displacement is in the
same direction as it was when it left your hand the first time.

What if you want to increase the amplitude of the wave that you create?
Suppose you adjust the motion of your hand so that the period of vibra-
tion equals the time needed for the wave to make one round-trip from
your hand to the door and back. Then, the displacement given by your
hand to the rope each time will add to the displacement of the reflected
wave. As a result, the oscillation of the rope in one segment will be much
greater than the motion of your hand. You
would expect this based on your knowledge
of constructive interference. This large-ampli-
tude oscillation is an example of mechanical
resonance. The nodes are at the ends of the
rope and an antinode is in the middle, as
shown in Figure 14-14a. Thus, the wave
appears to be standing still and is called a
standing wave. You should note, however,
that the standing wave is the interference 
of the two traveling waves moving in oppo-
site directions. If you double the frequency 
of vibration, you can produce one more 
node and one more antinode in the rope.
Then it appears to vibrate in two segments.
Further increases in frequency produce even
more nodes and antinodes, as shown in
Figures 14-14b and c.

■ Figure 14-14 Interference
produces standing waves in 
a rope. As the frequency is
increased, as shown from top 
to bottom, the number of nodes
and antinodes increases.

Wave 
Interaction
With a coiled-spring toy, you can
create pressure waves, as well 
as transverse waves of various
amplitudes, speeds, and
orientations. 
1. Design an experiment to test
what happens when waves from
different directions meet. 
2. Perform your experiment and
record your observations.

Analyze and Conclude
3. Does the speed of either wave
change? 
4. Do the waves bounce off each
other, or do they pass through
each other?

a

b

c

Richard Megna/Fundamental Photographs
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Ray

Wave
front

Barrier

Normal

Incident ray

Reflected
ray
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a

a

b
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■ Figure 14-15 Circular waves
spread outward from their source
(a). The wave can be represented
by circles drawn at their crests
(b). Notice that the rays are
perpendicular to the wave fronts.

■ Figure 14-16 A wave pulse in a
ripple tank is reflected by a barrier
(a). The ray diagram models the
wave in time sequence as it
approaches the barrier and is 
then reflected to the right (b).

Waves in Two Dimensions
You have studied waves on a rope and on a spring reflecting from rigid

supports, where the amplitude of the waves is forced to be zero by destruc-
tive interference. These mechanical waves move in only one dimension.
However, waves on the surface of water move in two dimensions, and
sound waves and electromagnetic waves will later be shown to move in
three dimensions. How can two-dimensional waves be demonstrated?

Picturing waves in two dimensions When you throw a small stone into
a calm pool of water, you see the circular crests and troughs of the result-
ing waves spreading out in all directions. You can sketch those waves by
drawing circles to represent the wave crests. If you dip your finger into
water with a constant frequency, the resulting sketch would be a series of
concentric circles, called wave fronts, centered on your finger. A wave front
is a line that represents the crest of a wave in two dimensions, and it can
be used to show waves of any shape, including circular waves and straight
waves. Figure 14-15a shows circular waves in water, and Figure 14-15b
shows the wave fronts that represent those water waves. Wave fronts drawn
to scale show the wavelengths of the waves, but not their amplitudes.

Whatever their shape, two-dimensional waves always travel in a 
direction that is perpendicular to their wave fronts. That direction can be
represented by a ray, which is a line drawn at a right angle to the crest of
the wave. When all you want to show is the direction in which a wave is
traveling, it is convenient to draw rays instead of wave fronts.

Reflection of waves in two dimensions A ripple tank can be used to
show the properties of two-dimensional waves. A ripple tank contains a
thin layer of water. Vibrating boards produce wave pulses, or, in the case of

(t)Fundamental Photographs, (b)Runk/Shoenberger from Grant Heilman
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Figure 14-16a, traveling waves of water with constant frequency.
A lamp above the tank produces shadows below the tank that
show the locations of the crests of the waves. The wave pulse trav-
els toward a rigid barrier that reflects the wave: the incident wave
moves upward, and the reflected wave moves to the right. 

The direction of wave motion can be modeled by a ray diagram.
Figure 14-16b shows the ray diagram for the waves in the ripple
tank. The ray representing the incident wave is the arrow pointing
upward. The ray representing the reflected wave points to the right.

The direction of the barrier also is shown by a line, which is
drawn at a right angle, or perpendicular, to the barrier, called the
normal. The angle between the incident ray and the normal is called
the angle of incidence. The angle between the normal and the
reflected ray is called the angle of reflection. The law of reflection
states that the angle of incidence is equal to the angle of reflection.

Refraction of waves in two dimensions A ripple tank also can be
used to model the behavior of waves as they move from one
medium into another. Figure 14-17a shows a glass plate placed in
a ripple tank. The water above the plate is shallower than the water
in the rest of the tank and acts like a different medium. As the
waves move from deep to shallow water, their speed decreases, 
and the direction of the waves changes. Because the waves in the
shallow water are generated by the waves in the deep water, their
frequency is not changed. Based on the equation λ � v/f, the decrease in
the speed of the waves means that the wavelength is shorter in the shallower
water. The change in the direction of waves at the boundary between two
different media is known as refraction. Figure 14-17b shows a wave front
and ray model of refraction. When you study the reflection and refraction
of light in Chapter 17, you will learn the law of refraction, called Snell’s law. 

You may not be aware that echoes are caused by the reflection of sound
off hard surfaces, such as the walls of a large warehouse or a distant 
cliff face. Refraction is partly responsible for rainbows. When white 
light passes through a raindrop, refraction separates the light into its 
individual colors. 

Section 14.3 Wave Behavior 391

a

b

■ Figure 14-17 As the water
waves move over a shallower
region of the ripple tank where 
a glass plate is placed, they slow
down and their wavelength
decreases (a). Refraction can be
represented by a diagram of wave
fronts and rays (b).

27. Waves at Boundaries Which of the following
wave characteristics remain unchanged when a
wave crosses a boundary into a different medium:
frequency, amplitude, wavelength, velocity, and/or
direction?

28. Refraction of Waves Notice in Figure 14-17a how
the wave changes direction as it passes from one
medium to another. Can two-dimensional waves
cross a boundary between two media without
changing direction? Explain.

29. Standing Waves In a standing wave on a string
fixed at both ends, how is the number of nodes
related to the number of antinodes?

30. Critical Thinking As another way to understand
wave reflection, cover the right-hand side of each
drawing in Figure 14-13a with a piece of paper. The
edge of the paper should be at point N, the node.
Now, concentrate on the resultant wave, shown in
darker blue. Note that it acts like a wave reflected
from a boundary. Is the boundary a rigid wall, or is it
open-ended? Repeat this exercise for Figure 14-13b.

14.3 Section Review

Tom Pantages
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Pendulum Vibrations
A pendulum can provide a simple model for the investigation of wave properties.
In this experiment, you will design a procedure to use the pendulum to examine
amplitude, period, and frequency of a wave. You also will determine the 
acceleration due to gravity from the period and length of the pendulum.

QUESTION
How can a pendulum demonstrate the properties of waves?

■ Determine what variables affect a pendulum’s
period.

■ Investigate the frequency and period amplitude
of a pendulum.

■ Measure g, the acceleration due to gravity,
using the period and length of a pendulum. 

string (1.5 m)
three sinkers
paper clip
ring stand with ring
stopwatch

1. Design a pendulum using a ring stand, a string
with a paper clip, and a sinker attached to the
paper clip. Be sure to check with your teacher
and have your design approved before you 
proceed with the lab.

2. For this investigation, the length of the pendulum
is the length of the string plus half the length of
the bob. The amplitude is how far the bob is
pulled from its equilibrium point. The frequency
is the cycles/s of the bob. The period is the
time for the bob to travel back and forth (one
cycle). When collecting data for the period, find
the time it takes to make ten cycles, and then
calculate the period in s/cycles. When finding
frequency, count how many cycles occur in 10 s,
and then convert your value to cycles/s.

3. Design a procedure that keeps the mass of the
bob and the amplitude constant, but varies the
length. Determine the frequency and period of
the pendulum. Record your results in the data
table. Use several trials at several lengths to
collect your data. 

4. Design a procedure that keeps length and
amplitude constant, but varies the mass of the
bob. Determine the frequency and period of 
the pendulum. Record your results in the data
table. Use several trials to collect your data.

5. Design a procedure that keeps length and
mass of the bob constant, but varies the ampli-
tude of the pendulum. Determine the frequency
and period of the pendulum. Record your
results in the data table. Use several trials 
to collect your data.

6. Design a procedure using the pendulum to cal-
culate g, the acceleration due to gravity, using 
the equation T � 2���/g�. T is the period, and 
� is the length of the pendulum string. Remember
to use several trials to collect your data.

Procedure

Possible Materials

Safety Precautions

Objectives

Horizons Companies
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1. Summarize What is the relationship between
the pendulum’s amplitude and its period?

2. Summarize What is the relationship between
the pendulum’s bob mass and its period?

3. Compare and Contrast How are the period
and length of a pendulum related?

4. Analyze Calculate g from your data in step 6.

5. Error Analysis What is the percent error of
your experimental g value? What are some 
possible reasons for the difference between
your experimental value of g and the accepted
value of g ?

1. Infer What variable(s) affects a pendulum’s
period?

2. Analyze Why is it better to run three or more
trials to obtain the frequency and period of
each pendulum?

3. Compare How is the motion of a pendulum
like that of a wave?

4. Analyze and Conclude When does the pen-
dulum bob have the greatest kinetic energy?

5. Analyze and Conclude When does the pen-
dulum bob have the greatest potential energy?

Suppose you had a very long pendulum. What
other observations could be made, over the period
of a day, of this pendulum’s motion?

Pendulums are used to drive some types of clocks.
Using the observations from your experiments,
what design problems are there in using your 
pendulum as a time-keeping instrument?

Real-World Physics

Going Further

Conclude and Apply

Analyze

To find out more about the behavior of waves,
visit the Web site: physicspp.com

Data Table 1
This data table format can be used for steps 2–5.

Trial 1 Trial 2 Trial 3 Average Period 
(s/cycle)

Frequency 
(cycles/s)

Length 1 ———

Length 2 ———

Length 3

Mass 1 ———

Mass 2 ———

Mass 3

Amplitude 1 ———

Amplitude 2 ———

Amplitude 3

Data Table 2
This data table format can be used for step 6, finding g.

Trial 1 Trial 2 Trial 3 Average Period 
(s/cycle)

Length of
String (m)

Length 1

Length 2

Length 3

http://www.glencoe.com
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Earthquake ProtectionEarthquake Protection

Special pads support the building, yet allow
sliding if earth moves horizontally.

Column ends can slide 22 inches in any
direction on smooth support pads.

”Moat“ allows
movement
between building
and surrounding
earth.

Columns (extensions
of internal support
beams)

Structural rubber cushions
allow 24 inches of vertical
movement.

Braces prevent
columns from
bending.

Flexible
grating

Foundation
wall 

1. Research What is the framework of
your school made of and how were the
foundations built?

2. Observe Find a brick building that has
a crack in one of its walls. See if you
can tell why the crack formed and why
it took the path that it did. What might
this have to do with earthquakes? 

Going Further

and its foundation. To minimize vertical shak-
ing of a building, springs are inserted into the
vertical members of the framework. These
springs are made of a strong rubber compound
compressed within heavy structural steel cylin-
ders. Sideways shaking is diminished by placing
sliding supports beneath the building columns.
These allow the structure to remain stationary
if the ground beneath it moves sideways. 

Long structures, like tunnels and bridges,
must be constructed to survive vertical or hori-
zontal shearing fractures of the earth beneath.
The Bay Area Rapid Transit tunnel that runs
beneath San Francisco Bay has flexible couplings
for stability should the bay floor buckle.

New building designs reduce damage by earthquakes.

An earthquake is the equivalent of a violent
explosion somewhere beneath the surface of
Earth. The mechanical waves that radiate from
an earthquake are both transverse and longitu-
dinal. Transverse waves shake a structure 
horizontally, while longitudinal waves cause
vertical shaking. Earthquakes cannot be pre-
dicted or prevented, so we must construct our
buildings to withstand them.

As our knowledge of earthquakes increases,
existing buildings must be retrofitted to with-
stand newly discovered types of earthquake-
related failures. 

Reducing Damage Most bridges and 
parking ramps were built by stacking steel-
reinforced concrete sections atop one another.
Gravity keeps them in place. These structures
are immensely strong under normal conditions,
but they can be shaken apart by a strong earth-
quake. New construction codes dictate that
their parts must be bonded together by heavy
steel straps. 

Earthquake damage to buildings also can be
reduced by allowing a small amount of con-
trolled movement between the building frame



14.1 Periodic Motion

Vocabulary
• periodic motion (p. 375)

• simple harmonic motion 
(p. 375)

• period (p. 375)

• amplitude (p. 375)

• Hooke’s law (p. 376)

• pendulum (p. 378)

• resonance (p. 380)

14.2 Wave Properties

Vocabulary
• wave (p. 381)

• wave pulse (p. 381)

• periodic wave (p. 381)

• transverse wave (p. 381)

• longitudinal wave (p. 381)

• surface wave (p. 382)

• trough (p. 383)

• crest (p. 383)

• wavelength (p. 383)

• frequency (p. 384)

14.3 Wave Behavior

Vocabulary
• incident wave (p. 387)

• reflected wave (p. 387)

• principle of superposition 
(p. 388)

• interference (p. 388)

• node (p. 389)

• antinode (p. 389)

• standing wave (p. 389)

• wave front (p. 390)

• ray (p. 390)

• normal (p. 391)

• law of reflection (p. 391)

• refraction (p. 391)

Key Concepts
• Periodic motion is any motion that repeats in a regular cycle.

• Simple harmonic motion results when the restoring force on an object is
directly proportional to the object’s displacement from equilibrium. 
Such a force obeys Hooke’s law. 

• The elastic potential energy stored in a spring that obeys Hooke’s law is
expressed by the following equation.

• The period of a pendulum can be found with the following equation.

T � 2���
g
l
��

PEsp � �
1
2

�kx2

F � �kx

Key Concepts
• Waves transfer energy without transferring matter. 

• In transverse waves, the displacement of the medium is perpendicular to 
the direction of wave motion. In longitudinal waves, the displacement 
is parallel to the direction of wave motion. 

• Frequency is the number of cycles per second and is related to period by:

• The wavelength of a continuous wave can be found by using the following
equation.

� � �
v
f
�

f � �
1
T

�

Key Concepts
• When a wave crosses a boundary between two media, it is partially

transmitted and partially reflected.

• The principle of superposition states that the displacement of a medium
resulting from two or more waves is the algebraic sum of the displacements
of the individual waves.

• Interference occurs when two or more waves move through a medium at 
the same time.

• When two-dimensional waves are reflected from boundaries, the angles of
incidence and reflection are equal.

• The change in direction of waves at the boundary between two different
media is called refraction.

395physicspp.com/vocabulary_puzzlemaker
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31. Complete the concept map using the following
terms and symbols: amplitude, frequency, v, �, T.

Mastering Concepts
32. What is periodic motion? Give three examples of

periodic motion. (14.1)

33. What is the difference between frequency and
period? How are they related? (14.1)

34. What is simple harmonic motion? Give an example
of simple harmonic motion. (14.1)

35. If a spring obeys Hooke’s law, how does it behave?
(14.1)

36. How can the spring constant of a spring be
determined from a graph of force versus
displacement? (14.1)

37. How can the potential energy in a spring be
determined from the graph of force versus
displacement? (14.1)

38. Does the period of a pendulum depend on the
mass of the bob? The length of the string? Upon
what else does the period depend? (14.1)

39. What conditions are necessary for resonance to
occur? (14.1)

40. How many general methods of energy transfer are
there? Give two examples of each. (14.2)

41. What is the primary difference between a mechanical
wave and an electromagnetic wave? (14.2)

42. What are the differences among transverse,
longitudinal, and surface waves? (14.2)

43. Waves are sent along a spring of fixed length. (14.2)

a. Can the speed of the waves in the spring be
changed? Explain.

b. Can the frequency of a wave in the spring be
changed? Explain. 

44. What is the wavelength of a wave? (14.2)

45. Suppose you send a pulse along a rope. How does
the position of a point on the rope before the pulse
arrives compare to the point’s position after the
pulse has passed? (14.2)

46. What is the difference between a wave pulse and a
periodic wave? (14.2)

47. Describe the difference between wave frequency and
wave velocity. (14.2)

48. Suppose you produce a transverse wave by shaking
one end of a spring from side to side. How does the
frequency of your hand compare with the frequency
of the wave? (14.2)

49. When are points on a wave in phase with each
other? When are they out of phase? Give an
example of each. (14.2)

50. What is the amplitude of a wave and what does it
represent? (14.2)

51. Describe the relationship between the amplitude of
a wave and the energy it carries. (14.2)

52. When a wave reaches the boundary of a new
medium, what happens to it? (14.3)

53. When a wave crosses a boundary between a thin
and a thick rope, as shown in Figure 14-18, its
wavelength and speed change, but its frequency does
not. Explain why the frequency is constant. (14.3)

54. How does a spring pulse reflected from a rigid wall
differ from the incident pulse? (14.3)

55. Describe interference. Is interference a property of
only some types of waves or all types of waves? (14.3)

56. What happens to a spring at the nodes of a standing
wave? (14.3)

57. Violins A metal plate is held fixed in the center and
sprinkled with sugar. With a violin bow, the plate is
stroked along one edge and made to vibrate. The
sugar begins to collect in certain areas and move
away from others. Describe these regions in terms of
standing waves. (14.3)

58. If a string is vibrating in four parts, there are points
where it can be touched without disturbing its
motion. Explain. How many of these points exist?
(14.3)

59. Wave fronts pass at an angle from one medium into
a second medium, where they travel with a different
speed. Describe two changes in the wave fronts.
What does not change? (14.3)

Concept Mapping 
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Waves

speed period wavelength

A f

■ Figure 14-18



Applying Concepts
60. A ball bounces up and down on the end of a spring.

Describe the energy changes that take place during
one complete cycle. Does the total mechanical
energy change?

61. Can a pendulum clock be used in the orbiting
International Space Station? Explain.

62. Suppose you hold a 1-m metal bar in your hand
and hit its end with a hammer, first, in a direction
parallel to its length, and second, in a direction at
right angles to its length. Describe the waves
produced in the two cases.

63. Suppose you repeatedly dip your finger into a sink
full of water to make circular waves. What happens
to the wavelength as you move your finger faster?

64. What happens to the period of a wave as the
frequency increases?

65. What happens to the wavelength of a wave as the
frequency increases?

66. Suppose you make a single pulse on a stretched
spring. How much energy is required to make a
pulse with twice the amplitude?

67. You can make water slosh back and forth in a
shallow pan only if you shake the pan with the
correct frequency. Explain.

68. In each of the four waves in Figure 14-19, the pulse
on the left is the original pulse moving toward the
right. The center pulse is a reflected pulse; the pulse
on the right is a transmitted pulse. Describe the
rigidity of the boundaries at A, B, C, and D.

Mastering Problems
14.1 Periodic Motion
69. A spring stretches by 0.12 m when some apples

weighing 3.2 N are suspended from it, as shown 
in Figure 14-20. What is the spring constant of 
the spring?

70. Car Shocks Each of the coil springs of a car has a
spring constant of 25,000 N/m. How much is each
spring compressed if it supports one-fourth of the
car’s 12,000-N weight? 

71. How much potential energy is stored in a spring
with a spring constant of 27 N/m if it is stretched
by 16 cm? 

72. Rocket Launcher A toy rocket-launcher contains a
spring with a spring constant of 35 N/m. How 
far must the spring be compressed to store 1.5 J 
of energy? 

73. Force-versus-length data for a spring are plotted on
the graph in Figure 14-21. 
a. What is the spring constant of the spring?
b. What is the energy stored in the spring when it is

stretched to a length of 0.50 m?
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74. How long must a pendulum be to have a period 
of 2.3 s on the Moon, where g � 1.6 m/s2? 

14.2 Wave Properties 
75. Building Motion The Sears Tower in Chicago,

shown in Figure 14-22, sways back and forth in the
wind with a frequency of about 0.12 Hz. What is its
period of vibration? 

76. Ocean Waves An ocean wave has a length of 
12.0 m. A wave passes a fixed location every 3.0 s.
What is the speed of the wave? 

77. Water waves in a shallow dish are 6.0-cm long. 
At one point, the water moves up and down at a
rate of 4.8 oscillations/s. 
a. What is the speed of the water waves? 
b. What is the period of the water waves?

78. Water waves in a lake travel 3.4 m in 1.8 s. The
period of oscillation is 1.1 s. 
a. What is the speed of the water waves? 
b. What is their wavelength?

79. Sonar A sonar signal of frequency 1.00	106 Hz
has a wavelength of 1.50 mm in water. 
a. What is the speed of the signal in water?
b. What is its period in water? 
c. What is its period in air? 

80. A sound wave of wavelength 0.60 m and a velocity
of 330 m/s is produced for 0.50 s. 
a. What is the frequency of the wave? 
b. How many complete waves are emitted in this

time interval? 
c. After 0.50 s, how far is the front of the wave from

the source of the sound?

81. The speed of sound in water is 1498 m/s. A sonar
signal is sent straight down from a ship at a point
just below the water surface, and 1.80 s later, the
reflected signal is detected. How deep is the water?

82. Pepe and Alfredo are resting on an offshore raft after
a swim. They estimate that 3.0 m separates a trough
and an adjacent crest of each surface wave on the
lake. They count 12 crests that pass by the raft in
20.0 s. Calculate how fast the waves are moving. 

83. Earthquakes The velocity of the transverse waves
produced by an earthquake is 8.9 km/s, and that of
the longitudinal waves is 5.1 km/s. A seismograph
records the arrival of the transverse waves 68 s
before the arrival of the longitudinal waves. 
How far away is the earthquake? 

14.3 Wave Behavior 
84. Sketch the result for each of the three cases shown

in Figure 14-23, when the centers of the two
approaching wave pulses lie on the dashed line so
that the pulses exactly overlap. 

85. If you slosh the water in a bathtub at the correct
frequency, the water rises first at one end and then
at the other. Suppose you can make a standing wave
in a 150-cm-long tub with a frequency of 0.30 Hz.
What is the velocity of the water wave? 

86. Guitars The wave speed in a guitar string is 265 m/s.
The length of the string is 63 cm. You pluck the
center of the string by pulling it up and letting go.
Pulses move in both directions and are reflected 
off the ends of the string. 
a. How long does it take for the pulse to move to

the string end and return to the center? 
b. When the pulses return, is the string above or

below its resting location? 
c. If you plucked the string 15 cm from one end of

the string, where would the two pulses meet? 
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87. Sketch the result for each of the four cases shown in
Figure 14-24, when the centers of each of the two
wave pulses lie on the dashed line so that the pulses
exactly overlap. 

Mixed Review
88. What is the period of a pendulum with a length of

1.4 m? 

89. The frequency of yellow light is 5.1	1014 Hz. Find
the wavelength of yellow light. The speed of light is
3.00	108 m/s. 

90. Radio Wave AM-radio signals are broadcast at
frequencies between 550 kHz (kilohertz) and 
1600 kHz and travel 3.0	108 m/s. 
a. What is the range of wavelengths for these

signals? 
b. FM frequencies range between 88 MHz

(megahertz) and 108 MHz and travel at the same
speed. What is the range of FM wavelengths?

91. You are floating just offshore at the beach. Even
though the waves are steadily moving in toward the
beach, you don’t move any closer to the beach.
a. What type of wave are you experiencing as you

float in the water?
b. Explain why the energy in the wave does not

move you closer to shore.
c. In the course of 15 s you count ten waves that

pass you. What is the period of the waves?
d. What is the frequency of the waves?
e. You estimate that the wave crests are 3 m apart.

What is the velocity of the waves?
f. After returning to the beach, you learn that the

waves are moving at 1.8 m/s. What is the actual
wavelength of the waves?

92. Bungee Jumper A high-altitude bungee jumper
jumps from a hot-air balloon using a 540-m-bungee
cord. When the jump is complete and the jumper is
just suspended from the cord, it is stretched 1710 m.
What is the spring constant of the bungee cord if
the jumper has a mass of 68 kg?

93. The time needed for a water wave to change from
the equilibrium level to the crest is 0.18 s. 
a. What fraction of a wavelength is this?
b. What is the period of the wave? 
c. What is the frequency of the wave?

94. When a 225-g mass is hung from a spring, the
spring stretches 9.4 cm. The spring and mass then
are pulled 8.0 cm from this new equilibrium
position and released. Find the spring constant of
the spring and the maximum speed of the mass.

95. Amusement Ride You notice that your favorite
amusement-park ride seems bigger. The ride consists
of a carriage that is attached to a structure so it
swings like a pendulum. You remember that the
carriage used to swing from one position to another
and back again eight times in exactly 1 min. Now it 
only swings six times in 1 min. Give your answers
to the following questions to two significant digits.
a. What was the original period of the ride?
b. What is the new period of the ride?
c. What is the new frequency?
d. How much longer is the arm supporting the

carriage on the larger ride?
e. If the park owners wanted to double the period

of the ride, what percentage increase would need
to be made to the length of the pendulum?

96. Clocks The speed at which a grandfather clock runs
is controlled by a swinging pendulum. 
a. If you find that the clock loses time each day,

what adjustment would you need to make to the
pendulum so it will keep better time?

b. If the pendulum currently is 15.0 cm, by how
much would you need to change the length to
make the period lessen by 0.0400 s?

97. Bridge Swinging In the summer over the New
River in West Virginia, several teens swing from
bridges with ropes, then drop into the river after a
few swings back and forth. 
a. If Pam is using a 10.0-m length of rope, how

long will it take her to reach the peak of her
swing at the other end of the bridge?

b. If Mike has a mass that is 20 kg more than Pam,
how would you expect the period of his swing to
differ from Pam’s?

c. At what point in the swing is KE at a maximum?
d. At what point in the swing is PE at a maximum?
e. At what point in the swing is KE at a minimum?
f. At what point in the swing is PE at a minimum?
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98. You have a mechanical fish scale that is made with
a spring that compresses when weight is added to
a hook attached below the scale. Unfortunately,
the calibrations have completely worn off of the
scale. However, you have one known mass of
500.0 g that displaces the spring 2.0 cm. 
a. What is the spring constant for the spring?
b. If a fish displaces the spring 4.5 cm, what is the

mass of the fish?

99. Car Springs When you add a 45-kg load to the
trunk of a new small car, the two rear springs
compress an additional 1.0 cm. 
a. What is the spring constant for each of the

springs?
b. How much additional potential energy is stored

in each of the car springs after loading the trunk?

100. The velocity of a wave on a string depends on how
tightly the string is stretched, and on the mass per
unit length of the string. If FT is the tension in the
string, and 
 is the mass/unit length, then the
velocity, v, can be determined by the following
equation.

v � ��
F



T��
A piece of string 5.30-m long has a mass of 15.0 g.
What must the tension in the string be to make the
wavelength of a 125-Hz wave 120.0 cm? 

Thinking Critically
101. Analyze and Conclude A 20-N force is required

to stretch a spring by 0.5 m. 
a. What is the spring constant?
b. How much energy is stored in the spring?
c. Why isn’t the work done to stretch the spring

equal to the force times the distance, or 10 J?

102. Make and Use Graphs Several weights were
suspended from a spring, and the resulting
extensions of the spring were measured. Table 14-1
shows the collected data.

a. Make a graph of the force applied to the spring
versus the spring length. Plot the force on the 
y-axis.

b. Determine the spring constant from the graph.
c. Using the graph, find the elastic potential

energy stored in the spring when it is stretched
to 0.50 m.

103. Apply Concepts Gravel roads often develop
regularly spaced ridges that are perpendicular to
the road, as shown in Figure 14-25. This effect,
called washboarding, occurs because most cars
travel at about the same speed and the springs that
connect the wheels to the cars oscillate at about
the same frequency. If the ridges on a road are 
1.5 m apart and cars travel on it at about 5 m/s,
what is the frequency of the springs’ oscillation?

Writing in Physics
104. Research Christiaan Huygens’ work on waves and

the controversy between him and Newton over 
the nature of light. Compare and contrast their
explanations of such phenomena as reflection and
refraction. Whose model would you choose as the
best explanation? Explain why.

Cumulative Review
105. A 1400-kg drag racer automobile can complete a

one-quarter mile (402 m) course in 9.8 s. The final
speed of the automobile is 250 mi/h (112 m/s).
(Chapter 11)
a. What is the kinetic energy of the automobile?
b. What is the minimum amount of work that was

done by its engine? Why can't you calculate the
total amount of work done?

c. What was the average acceleration of the
automobile?

106. How much water would a steam engine have to
evaporate in 1 s to produce 1 kW of power?
Assume that the engine is 20 percent efficient.
(Chapter 12)

Table 14-1
Weights on a Spring

Force, F (N) Extension, x (m)

2.5

5.0

7.5

10.0

12.5

15.0

0.12

0.26

0.35

0.50

0.60

0.71
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1. What is the value of the spring constant of a
spring with a potential energy of 8.67 J when
it’s stretched 247 mm?

70.2 N/m 142 N/m

71.1 N/m 284 N/m

2. What is the force acting on a spring with a
spring constant of 275 N/m that is stretched
14.3 cm?

2.81 N 39.3 N

19.2 N 3.93	1030 N

3. A mass stretches a spring as it hangs from the
spring. What is the spring constant?

0.25 N/m 26 N/m

0.35 N/m 3.5	102 N/m

4. A spring with a spring constant of 350 N/m
pulls a door closed. How much work is done as
the spring pulls the door at a constant velocity
from an 85.0-cm stretch to a 5.0-cm stretch?

112 N�m 224 N�m

130 J 1.12	103 J

5. What is the correct rearrangement of the
formula for the period of a pendulum to find
the length of the pendulum?

l � �
4�

T2

2g
� l � �

(2
T
�

2g
)2�

l � �
4
g
�

T
2� l � �

2
T
�

g
�

6. What is the frequency of a wave with a period
of 3 s?

0.3 Hz �
�
3

� Hz

�
3
c
� Hz 3 Hz

7. Which option describes a standing wave?

8. A 1.2-m wave travels 11.2 m to a wall and
back again in 4 s. What is the frequency of 
the wave?

0.2 Hz 5 Hz

2 Hz 9 Hz

9. What is the length of a pendulum that has a
period of 4.89 s?

5.94 m 24.0 m

11.9 m 37.3 m

Extended Answer
10. Use dimensional analysis of the equation 

kx � mg to derive the units of k.

11.2 m

1.2 m
0.85 m

30.4 g

Multiple Choice

Practice, Practice, Practice

Practice to improve your performance on
standardized tests. Don’t compare yourself to
anyone else.

Chapter 14 Standardized Test Practice 401physicspp.com/standardized_test

Waves Direction Medium

Identical Same Same

Nonidentical Opposite Different

Identical Opposite Same

Nonidentical Same Different
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