DEALI NG WITH UNCERTAI NTI ES
 IB PHYSICS EXPECTATIONS

- Describe and give examples of random and systematic errors.
- Distinguish between precision and accuracy.
- Explain how the effect of random error may be reduced.
- Calculate quantities and results of calculations to the appropriate number of significant figures.

- Determine the uncertainties in the results of calculations.
- Identify uncertainties as error bars in graphs (one axis only).
- State random uncertainties as an uncertainty range (\pm) and represent it graphically as an error bar in a graph.
- Determine the uncertainties in the slope and intercepts of a straight-line graph.

SUMMARY OF BASIC RULES

Repeated Measurements

For a number of repeated values, we find the average or mean.
The uncertainty in the mean is plus or minus one-half of the range between the maximum value and the minimum value.

$$
\bar{x} \pm \Delta \bar{x}=\frac{x_{1}+x_{2}+\ldots x_{n}}{n} \pm \frac{x_{\mathrm{Max}}-x_{\mathrm{Min}}}{2}
$$

Sum

$$
(A \pm \Delta A)+(B \pm \Delta B)=(A+B) \pm(\Delta A+\Delta B)
$$

Difference

$$
(A \pm \Delta A)-(B \pm \Delta B)=(A-B) \pm(\Delta A+\Delta B)
$$

Product

$$
(A \pm \Delta A) \times(B \pm \Delta B)=(A \times B) \pm\left[\left(\frac{\Delta A}{A} 100 \%\right)+\left(\frac{\Delta B}{B} 100 \%\right)\right]
$$

Quotient

$$
\frac{A \pm \Delta A}{B \pm \Delta B}=\frac{A}{B} \pm\left[\left(\frac{\Delta A}{A} 100 \%\right)+\left(\frac{\Delta B}{B} 100 \%\right)\right]
$$

$n^{\text {th }}$ Power

$$
(A \pm \Delta A)^{n}=A^{n} \pm n\left(\frac{\Delta A}{A} 100 \%\right)=A^{n} \pm n \Delta A \%
$$

$n^{\text {th }}$ Root \quad For $\sqrt[n]{A \pm \Delta A}$, we find $\sqrt[n]{A} \pm \frac{1}{n}\left(\frac{\Delta A}{A} 100 \%\right)=\sqrt[n]{A} \pm \frac{\Delta A \%}{n}$

Gradients in Graphs

The gradient of the best straight-line of a graph $=m_{\text {Best }}$ and the minimum and the maximum gradients based on the uncertainty range of the first and last data points are $m_{\text {Max }}$ and $m_{\text {Min }}$.

$$
m_{\text {Best }} \pm \Delta m=m_{\text {Best }} \pm\left(\frac{m_{\mathrm{Max}}-m_{\mathrm{Min}}}{2}\right)
$$

Stating Uncertainties

Experimental uncertainties should be rounded off to one significant figure. The least significant figure in a stated answer should be of the same order of magnitude (in the same decimal position) as the single digit uncertainty value.

$$
g \pm \Delta g=(9.81734 \pm 0.0217) \mathrm{ms}^{-2} \rightarrow \therefore g \pm \Delta g=(9.82 \pm 0.02) \mathrm{m} \mathrm{~s}^{-2}
$$

