Review:

- 1. Categorize the following motions as being either examples of + or acceleration.
 - a. Moving in the + direction and speeding up (getting faster)
 - b. Moving in the + direction and slowing down (getting slower)
 - c. Moving in the direction and speeding up (getting faster)
 - d. Moving in the direction and slowing down (getting slower)

Interpreting Position-Graphs

On the graphs below, draw two lines/curves to represent the given verbal descriptions; label the lines/curves as A or B.

3. For each type of accelerated motion, construct the appropriate shape of a position-time graph.

 Use your understanding of the meaning of slope and shape of position-time graphs to describe the motion depicted by each of the following graphs.

Use the position-time graphs below to determine the velocity. PSYW

 On the graphs below, draw two lines/curves to represent the given verbal descriptions; label the lines/curves as A or B.

$$a = \frac{\Delta V}{\Delta t} = \frac{V_f - V_i}{t_i - t_i}$$

$$= 32 - 4.0 \frac{m}{s}$$

$$= 28 \frac{m}{s}$$

$$= 3.5 \frac{m}{s^2}$$

$$a = \frac{V_f - V_i}{\frac{1}{4} \cdot f - \frac{1}{4} \cdot i}$$

$$= 8.0 - 32 \frac{m}{3}$$

$$= -24 \frac{m}{5} = -2.0 \frac{m}{5^2}$$

PSYW:

The area under the line of a velocity-time graph can be calculated using simple rectangle and triangle equations. The graphs below are examples:

If the area under the line forms a ...

... rectangle, then use area = base*height

... triangle, then use

... trapezoid, then make it into a rectangle + triangle

Time

8.0

+ dir speeding up

+accel

T:-dir

slowing down

+ accel

II: at rest

accel=0

vel=0