Doppler Effect

What is the Doppler Effect?

- Change in observed frequency or wavelength when the source of the waves and the observer are in motion relative to each other

- Occurs for all types of waves

From the Car

Car Drives by

Our Observations

- When a source is moving toward a stationary observer, the apparent frequency is higher than emitted frequency and lower when the source is moving away
- When the source is stationary and the observer moves toward it, the apparent frequency is higher than emitted and lower when the observer moves away

Uses of the Doppler Effect

- Police speed guns
- Doppler weather radar for tracking storms

Uses of Doppler Effect (cont.)

- Measure blood flow

- Determine velocities of distant stars and galaxies

Doppler Animation

http://www.walter-fendt.de/ph14e/dopplereff.htm

Doppler Effect Applets

- http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=21.0
- http://www.lon-capa.org/~mmp/applist/doppler/d.htm

Some youtube movies

- http://www.youtube.com/watch?v=RsiY8VdDI DQ\&feature=related
- http://www.youtube.com/watch?v=Kg9F5pN5 tll\&feature=related

Deriving the formulas

- Simplest case: source velocity in line with observer
- In the diagram the observer o is at rest with respect to the medium and the source is moving with speed v_{s}.

- Source emits note of constant frequency f that travels with speed v in the medium: this wave velocity does not change.
- S^{\prime} shows the position of the source $\Delta \mathrm{t}$ later.
- In a time Δt the observer would receive $\mathrm{f} \Delta \mathrm{t}$ waves and when the source is at rest these waves will occupy a distance $v \Delta t$.
- The wavelength = distance occupied by the waves \div the number of waves
- The wavelength $=v \Delta t / f \Delta t=v / f$
- Because of the motion of the source this number of waves will now occupy a distance $v \Delta t-v_{s} \Delta t$
- The "new" wavelength $=\left(v \Delta t-v_{s} \Delta t\right) / f \Delta t$
- i.e. $\lambda^{\prime}=\left(v-v_{s}\right) / f$
- If f^{\prime} is the new frequency, then
- $\lambda^{\prime}=v / f^{\prime}=\left(v-v_{s}\right) / f$
- Rearranging
- $f^{\prime}=v /\left(v-v_{s}\right) * f$
- Dividing throughout by v gives

$$
f^{\prime}=\frac{1}{1-\left(v_{s} / v\right)} f
$$

- If source moves away from observer then the expression becomes

$$
f^{\prime}=\frac{1}{1+\left(v_{s} / v\right)} f
$$

For a moving observer

- Observer moving towards source
- Relative velocity $=v+\mathrm{v}_{\mathrm{O}}$
- $f^{\prime}=\left(v+v_{0}\right) / \lambda$
- But $\lambda=v / f$
- Therefore $f^{\prime}=\left(v+v_{0}\right) / v / f$
- Rearranging gives
- $f^{\prime}=\left(\left(v+v_{0}\right) / v\right) f$
- If the observer is moving towards the source
- $f^{\prime}=\left(1+\left(v_{0} / v\right)\right) f$
- If the observer is moving away from the source
- $f^{\prime}=\left(1-\left(v_{0} / v\right)\right) f$

Doppler Effect for Light

- Upper absorption band: no relative velocity
- Middle: red shift source moving away from viewer
- Lower: blue shift -
 source moving toward observer
http://www.physorg.com/news200044818.h
- Equation (v << c):

$$
\Delta f=f_{s}(v / c) \quad-\text { or- } \quad \Delta \lambda=\lambda_{s}(v / \mathrm{c})
$$

Example Problem \#1

- A car is moving at a speed of $34 \mathrm{~ms}^{-1}$ towards a stationary source of sound emitting a note of frequency 5.0 kHz . What frequency is observed by the people in the car? Use $v=340 \mathrm{~ms}^{-1}$.
- Answer: 5500 Hz

Example Problem \#2

- A star is moving away from the earth at a speed of $3.0 \times 10^{5} \mathrm{~ms}^{-1}$. If the light emitted from the star has $f=6.0 \times 10^{14}$ Hz , find the frequency shift observed on earth.
- Answer: $\Delta \mathrm{f}=6.0 \times 10^{11} \mathrm{~Hz}$; earth observer would detect $\mathrm{f}=6.0 \times 10^{14}-6.0 \times 10^{11}=5.994$ $x 10^{14} \mathrm{~Hz}$ (red shift)

More Links

- http://www.school-forchampions.com/SCIENCE/sound doppler equ ations.htm
- http://www.colorado.edu/physics/2000/apple ts/doppler.html

