Doppler Effect

What is the Doppler Effect?

 Change in observed frequency or wavelength when the source of the waves and the observer are in motion relative to each other

Occurs for *all* types of waves

http://www.youtube.com/watch?v=Tn35SB1_NYI

From the Car

Car Drives by

Our Observations

- When a source is moving toward a stationary observer, the apparent frequency is higher than emitted frequency and lower when the source is moving away
- When the source is stationary and the observer moves toward it, the apparent frequency is higher than emitted and lower when the observer moves away

Uses of the Doppler Effect

• Police speed guns

Doppler weather radar for tracking storms

Hurricane Charley, 13 August 2004, 20:47 GMT

Uses of Doppler Effect (cont.)

Measure blood flow

 Determine velocities of distant stars and galaxies

Doppler Animation

http://www.walter-fendt.de/ph14e/dopplereff.htm

Doppler Effect Applets

- http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=21.0
- http://www.lon-capa.org/~mmp/applist/doppler/d.htm

Some youtube movies

- <u>http://www.youtube.com/watch?v=RsiY8VdDI</u>
 <u>DQ&feature=related</u>
- <u>http://www.youtube.com/watch?v=Kg9F5pN5</u>
 <u>tll&feature=related</u>

Deriving the formulas

- Simplest case: source velocity in line with observer
- In the diagram the observer o is at rest with respect to the medium and the source is moving with speed v_s.

- Source emits note of constant frequency f that travels with speed v in the medium: <u>this wave velocity does</u> <u>not change.</u>
- S' shows the position of the source Δt later.
- In a time Δt the observer would receive $f\Delta t$ waves and when the source is at rest these waves will occupy a distance $v\Delta t$.

- The wavelength = distance occupied by the waves ÷ the number of waves
- The wavelength = $v\Delta t / f\Delta t = v/f$
- Because of the motion of the source this number of waves will now occupy a distance v Δt v_s Δt
- The "new" wavelength = (v Δ t v_s Δ t) / f Δ t
- i.e. $\lambda' = (v v_s) / f$

• If f' is the new frequency, then

•
$$\lambda' = v/f' = (v - v_s)/f$$

• Rearranging

•
$$f' = v / (v - v_s) * f$$

• Dividing throughout by v gives

•
$$f' = 1 f$$

 $1 - (v_s / v)$

 If source moves away from observer then the expression becomes

$$f' = 1 f$$

1+ (v_s / v)

For a moving observer

- Observer moving towards source
- Relative velocity = $v + v_0$

•
$$f' = (v + v_0) / \lambda$$

- But $\lambda = v/f$
- Therefore $f' = (v + v_0)/v/f$
- Rearranging gives
- $f' = ((v + v_0)/v)f$

If the observer is moving towards the source

•
$$f' = (1 + (v_0 / v)) f$$

 If the observer is moving away from the source

•
$$f' = (1 - (v_0 / v)) f$$

Doppler Effect for Light

- Upper absorption band: no relative velocity
- Middle: red shift source moving away from viewer
- Lower: blue shift source moving toward observer
- Equation (v << c): $\Delta f = f_s(v/c)$ -or- $\Delta \lambda = \lambda_s(v/c)$

http://www.physorg.com/news200044818.h tml

Example Problem #1

 A car is moving at a speed of 34 ms⁻¹ towards a stationary source of sound emitting a note of frequency 5.0 kHz. What frequency is observed by the people in the car? Use v = 340 ms⁻¹.

• Answer: 5500 Hz

Example Problem #2

A star is moving away from the earth at a speed of 3.0 x 10⁵ ms⁻¹. If the light emitted from the star has f = 6.0 x 10¹⁴ Hz, find the frequency shift observed on earth.

 Answer: Δf = 6.0 x 10¹¹ Hz; earth observer would detect f = 6.0 x 10¹⁴ – 6.0 x 10¹¹ = 5.994 x 10¹⁴ Hz (red shift)

More Links

- <u>http://www.school-for-</u> <u>champions.com/SCIENCE/sound_doppler_equ</u> <u>ations.htm</u>
- <u>http://www.colorado.edu/physics/2000/apple</u>
 <u>ts/doppler.html</u>

