CHAPTER 6

	Exercise	6.3	
1	. A suit	able unit of magnetic field strength is	
	А.	A N ⁻¹ m ⁻¹	
	В.	kg s ⁻² A ⁻¹	
	С.	A m N ⁻¹	
	D.	kg A s ²	
2	2. An electron enters a uniform magnetic field		
	that is	at right angles to its original direction of	
	movement. The path of the electron is		
	А.	an arc of a circle	
	В.	helical	
	С.	part of a parabola	
	D.	a straight line	
3	. Two lo oppos	Two long straight wires with currents flowing in opposite directions experience a force because	
	А.	the current in both wires increases	
	В.	the current in both wires decreases	
	C.	the current in the wires produces an attraction	
	D	the current in the wires produces a repulsion	
4	Determine in which direction the wire moves in the diagram shown.		

- A. outwards
- B. inwards
- C. it does not move
- D. sideways
- 5. An electron passes through a uniform magnetic field of 0.050 T at right angles to the direction of the field at a velocity of 2.5×10^6 ms⁻¹. The magnitude of the force on the electron in newtons is:
 - A. 2.0×10^{-14}
 - B. 4.0×10^{-14}
 - C. 8.0×10^{-14}
 - D. zero

6. Two parallel wires carry currents *I* of equal magnitude in opposite directions as shown in the diagram

The line along which the magnetic fields cancel is

- A. X
- B. Y
- C. Z
- D. the magnetic fields do not cancel
- 7. A beam of protons enter a uniform magnetic field directed into the page as shown

The protons will experience a force that pushes them

- A. into the page
- B. out of the page
- C. upwards
- D. downwards

170

8. Below is a schematic diagram of a coil connected to a battery.

When an electric current flows in the circuit, the end of the coil labelled X will be:

- A. a south pole
- B. a north pole
- C. either a north or a south pole
- D. neither a north or a south pole
- 9. An ion carrying a charge of 3.2×10^{-19} C enters a field of magnetic flux density of 1.5 T with a velocity of 2.5×10^5 m s⁻¹ perpendicular to the field. Calculate the force on the ion.
- A straight wire of length 50 cm carries a current of 50 A. The wire is at right angles to a magnetic field of 0.3 T. Calculate the force on the wire.
- 11. A straight wire of length 1.4 m carries a current of 2.5 A. If the wire is in a direction of 25° to a magnetic field of 0.7 T, calculate the force on the wire.
- 12. A beam of electrons enters a pair of crossed electric and magnetic fields in which the electric field strength of 3.0×104 V m⁻¹ and magnetic flux density of 1.0×10^{-2} T. If the beam is not deflected from its path by the fields, what must be the speed of the electrons?
- 13. An electron in one of the electron guns of a television picture tube is accelerated by a potential difference of 1.2×10^4 V. It is then deflected by a magnetic field of 6.0×10^{-4} T. Determine
 - i. the velocity of the electron when it enters the magnetic field.
 - ii. the radius of curvature of the electron while it is in the magnetic field.

- 14. A point charge of -15 C is moving due north at 1.0×10^3 ms⁻¹ enters a uniform magnetic field of 1.2×10^{-4} T directed into the page. Determine the magnitude and direction of the force on the charge.
- 15. A vertical wire 50 cm long carries a current of 1.5 A from the north to the south. It experiences a force of 0.2 N.
- (a) Determine the magnitude of the magnetic field
- (b) Determine how the force could be increased to could be increased to 2 N.