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1 Physics and physical 
measurement

Position
Physics is about modelling our universe. To do this, we need to define the things 
inside it. Each thing is different for many reasons, but one of the most important 
differences is their different positions. To define position, we use the quantity 
distance; this is how far the object is away from us. To quantify (put a number to) this 
difference we compare the distance with some standard measure (the metre rule).  
All distances can then be quoted as multiples of this fundamental unit, for example:

The distance from Earth to the Sun  1.5  1011 m
The size of a grain of sand  2  10 4 m
The distance to the nearest star  4  1016 m
The radius of the Earth  6.378  106 m

Standard form
The quantities above are expressed in standard form. This means that there is only 
one number to the left of the decimal place. For example:
1600 m in standard form is 1.6  103 m

Fundamental quantities1.1

Assessment statements
1.1.1 State and compare quantities to the nearest order of magnitude.
1.1.2 State the ranges of magnitude of distances, masses and times that 

occur in the universe, from the smallest to the greatest.
1.1.3 State ratios of quantities as differences of orders of magnitude.
1.1.4 Estimate approximate values of everyday quantities to one or two 

significant figures and/or to the nearest order of magnitude.
1.2.1 State the fundamental units in the SI system.
1.2.2 Distinguish between fundamental and derived units and give examples 

of derived units.
1.2.3 Convert between different units of quantities.
1.2.4 State units in the accepted SI format.
1.2.5 State values in scientific notation and in multiples of units with 

appropriate prefixes.

The metre
The metre was originally defined 
in terms of several pieces of metal 
positioned around Paris. This wasn’t 
very accurate so now one metre is 
defined as the distance travelled 
by light in a vacuum in   1

 _______ 299 792 458   of 
a second.

It is also acceptable to use a prefix 
to denote powers of 10

Prefix Value

T (tera) 1012

G (giga) 109

M (mega) 106

k (kilo) 103

c (centi) 10 2

m (milli) 10 3

µ (micro) 10 6

n (nano) 10 9

p (pico) 10 12

f (femto) 10 15

Exercise

1 Convert the following into metres (m) and write in standard form:
(a) Distance from London to New York  5585 km
(b) Height of Einstein was 175 cm
(c) Thickness of a human hair  25.4 m
(d) Distance to edge of the universe  100 000 million million million km
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Physics and physical measurement 1

The second
The second was originally defined 
as a fraction of a day but today’s 
definition is ‘the duration of 
9 192 631 770 periods of the 
radiation corresponding to the 
transition between the two 
hyperfine levels of the ground state 
of the caesium-133 atom’.

The kilogram
The kilogram is the only 
fundamental quantity that is still 
based on an object kept in Paris. 
Moves are underway to change 
the definition to something that is 
more constant and better defined 
but does it really matter? Would 
anything change if the size of the 
‘Paris mass’ changed?

Time
When something happens we call it an event. To distinguish between different 
events we use time. The time between two events is measured by comparing to 
some fixed value, the second. Time is also a fundamental quantity.

Some examples of times:
Time between beats of a human heart  1 s
Time for the Earth to go around the Sun  1 year
Time for the Moon to go around the Earth  1 month

Mass
If we pick different things up we find another difference. Some things are easy 
to lift up and others are difficult. This seems to be related to how much matter 
the objects consist of. To quantify this we define mass measured by comparing 
different objects to a piece of metal in Paris, the standard kilogram.

Some examples of mass:
Approximate mass of a man  75 kg
Mass of the Earth  5.97  1024 kg
Mass of the Sun  1.98  1030 kg

Volume
The space taken up by an object is defined by the volume. Volume is measured 
in cubic metres (m3). Volume is not a fundamental unit since it can be split into 
smaller units (m  m  m). We call units like this derived units.

Exercise

2 Convert the following times into seconds (s) and write in standard form:
(a) 85 years, how long Newton lived
(b) 2.5 ms, the time taken for a mosquito’s wing to go up and down
(c) 4 days, the time it took to travel to the Moon
(d) 2 hours 52 min 59 s, the time for Concord to fly from London to New York

Exercise

3 Convert the following masses to kilograms (kg) and write in standard form:
(a) The mass of an apple  200 g
(b) The mass of a grain of sand  0.00001 g
(c) The mass of a family car  2 tonnes

Exercises

4 Calculate the volume of a room of length 5 m, width 10 m and height 3 m.

5 Using the information from page 1, calculate:
(a) the volume of a human hair of length 20 cm
(b) the volume of the Earth.

If nothing ever happened, would 
there be time?
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Density
By measuring the mass and volume of many different objects we find that if the 
objects are made of the same material, the ratio mass/volume is the same. This 
quantity is called the density. The unit of density is kg m 3. This is another derived 
unit.

Examples include:
Density of water  1.0  103 kg m 3

Density of air  1.2 kg m 3

Density of gold  1.93  104 kg m 3

Displacement
So far all that we have modelled is the position of things and when events take 
place, but what if something moves from one place to another? To describe the 
movement of a body, we define the quantity displacement. This is the distance 
moved in a particular direction.

The unit of displacement is the same  
as length: the metre.

Example:
Refering to the map in Figure 1.1:
If you move from B to C,  
your displacement will be 5 km north.
If you move from A to B,  
your displacement will be 4 km west.

Summary of SI units
The International System of units is the set of units that are internationally 
agreed to be used in science. It is still OK to use other systems in everyday life 
(miles, pounds, Fahrenheit) but in science we must always use SI. There are seven 
fundamental quantities.

Base quantity Name Symbol

length metre m

mass kilogram kg

time second s

electric current ampere A

thermodynamic temperature kelvin K

amount of substance mole mol

luminous intensity candela cd

6 Calculate the mass of air in a room of length 5 m, width 10 m and height 3 m.

7 Calculate the mass of a gold bar of length 30 cm, width 15 cm and height 10 cm.

8 Calculate the average density of the Earth.

Exercises

Figure 1.1 Displacements on a 
map.

N

B

C

5 km

A
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Physics and physical measurement 1

All other SI units are derived units; these are based on the fundamental units and 
will be introduced and defined where relevant. So far we have come across just two.

Derived quantity Symbol Base units

volume m3 m  m  m

density kg m 3   
kg
 ___________  m  m  m  

Uncertainty and error in measurement
The SI system of units is defined so that we all use the same 
sized units when building our models of the physical world. 
However, before we can understand the relationship between 
different quantities, we must measure how big they are. To 
make measurements we use a variety of instruments. To 
measure length, we can use a ruler and to measure time, a 
clock. If our findings are to be trusted, then our measurements 
must be accurate, and the accuracy of our measurement 
depends on the instrument used and how we use it. Consider 
the following examples.

Measuring length using a ruler
Example 1
A good straight ruler marked in mm is used to measure the length of a rectangular 
piece of paper as in Figure 1.2. 

The ruler measures to within 0.5 mm (we call this the uncertainty in the 
measurement) so the length in cm is quoted to 2 dp. This measurement is precise 
and accurate.

Measurement1.2

Assessment statements
1.2.6 Describe and give examples of random and systematic errors.
1.2.7 Distinguish between precision and accuracy.
1.2.8 Explain how the effects of random errors may be reduced.
1.2.9 Calculate quantities and results of calculations to the appropriate 

number of significant figures.

Estimating uncertainty
When using a scale such as a ruler 
the uncertainty in the reading is   1 _ 2   
of the smallest division. In this case 
the smallest division is 1 mm so the 
uncertainty is 0.5 mm.

Figure 1.2 Length  6.40 0.05 cm. 0
cm

1 2 3 4 5 6 7

Even this huge device at CERN has 
uncertainties.
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Example 2
Figure 1.3 shows how a ruler with a broken end is used to measure the length of 
the same piece of paper. When using the ruler, you fail to notice the end is broken 
and think that the 0.5 cm mark is the zero mark.

This measurement is precise since the uncertainty is small but is not accurate since 
the value 6.90 cm is wrong.

Example 3
A cheap ruler marked only in   1 _ 2   cm is used to measure the length of the paper as in 
Figure 1.4.

These measurements are not precise but accurate, since you would get the same 
value every time.

Example 4
In Figure 1.5, a good ruler is used to measure the maximum height of a bouncing 
ball. Even though the ruler is good it is very difficult to measure the height of the 
bouncing ball. Even though you can use the scale to within 0.5 mm, the results are 
not precise (may be about 0.2 cm). However, if you do enough runs of the same 
experiment, your final answer could be accurate.

Errors in measurement
There are two types of measurement error – random and systematic. 

Random error
If you measure a quantity many times and get lots of slightly different readings then 
this called a random error. For example, when measuring the bounce of a ball it is 
very difficult to get the same value every time even if the ball is doing the same thing.

Systematic error
This is when there is something wrong with the measuring device or method. 
Using a ruler with a broken end can lead to a ‘zero error’ as in Example 2 above. 
Even with no random error in the results, you’d still get the wrong answer.

Reducing errors
To reduce random errors you can repeat your measurements. If the uncertainty 
is truly random, they will lie either side of the true reading and the mean of these 
values will be close to the actual value. To reduce a systematic error you need to find 

If you measure the same thing 
many times and get the same 
value, then the measurement is 
precise. 
If the measured value is close to the 
expected, then the measurement is 
accurate. If a football player hit the 
post 10 times in a row when trying 
to score a goal, you could say the 
shots are precise but not accurate.

Figure 1.5  Height  5.0  0.2 cm.

Figure 1.3  Length  6.90  0.05 cm.

Figure 1.4  Length  6.5  0.25 cm.

It is not possible to measure 
anything exactly. This is not 
because our instruments are not 
exact enough but because the 
quantities themselves do not exist 
as exact quantities.

1 2 3 4 5 6 7

0
cm

1 2 3 4 5 6 7

cm
1

2
3

4
5

6
7
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Physics and physical measurement 1

out what is causing it and correct your measurements accordingly. A systematic 
error is not easy to spot by looking at the measurements, but is sometimes apparent 
when you look at the graph of your results or the final calculated value.

Measurement in practice
Approximately one quarter of this course will be taken up with practical work, 
where you will be measuring quantities and doing calculations. There are 
certain accepted ways of handling data and the uncertainties they contain. In the 
following section we will go through the way to make tables, draw graphs and 
handle uncertainties. If you follow this method you will gain good marks in the 
internally assessed part of the course. 

To illustrate the method we will consider a simple experiment. You are presented 
with 6 metal cubes and asked to find the density of the metal. The apparatus 
supplied is a good ruler and an electronic balance. The ruler has millimetre 
divisions and the balance measures down to 0.1 g.

Density is defined as mass/volume, so to find density we must measure mass and 
volume. As the samples are cubes we only need to measure one side. We can then 
find the volume by cubing this value.

Repeating measurements 
Each cube has a different side length and mass. To make sure each mass is 
connected to the correct side length we put our data into a table; it is also simpler 
if we use a spreadsheet to perform calculations.

The cubes are not perfectly uniform so the side length depends upon which length 
we choose. To reduce the uncertainty in this measurement we measure the cube 
four times and find the average side length. However, if we measure the mass of 
the cube we get exactly the same measurement each time and there is therefore no 
point in repeating this measurement.

Mass/g 
0.1 g

Length 1/cm 
0.05 cm

Length 2/cm 
0.05 cm

Length 3/cm 
0.05 cm

Length 4/cm 
0.05 cm

124.1 2.40 2.30 2.50 2.40

235.2 3.00 3.10 2.90 3.00

344.0 3.40 3.30 3.40 3.50

463.2 3.70 3.80 3.60 3.70

571.2 4.00 4.10 3.90 4.00

660.0 4.20 4.30 4.10 4.20

Note: The uncertainty in each length measurement is 0.05 cm. However the actual 
uncertainty is greater as the spread of values demonstrates.

 Examiner’s hint: It’s OK to use 
non-SI units such as grams when 
collecting data. However, your final 
result (density) should be in SI units.

 Examiner’s hint: The number of 
decimal places in the data should be 
consistent with the uncertainty. It would 
be wrong to write 2.4000 cm since the 
uncertainty is  0.05 cm

Table 1.1

Collecting data1.3

Assessment statements
1.2.10 State uncertainties as absolute, fractional and percentage uncertainties.
1.2.11  Determine the uncertainties in results.
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This is calculated using the formula 
((max length)3  (min length)3)/2

This is found by calculating  
(max length  (min length)/2

Processing data
In this example we are first going to find the average side length and then the 
volume. If we look at the data we can see that the spread of data is more than the 
uncertainty in the ruler scale so we will also calculate the uncertainty in these 
values. When we know that, we can find out the uncertainty in the volume. This is 
found by calculating the maximum and minimum volumes using the maximum 
and minimum values for length. Even in this simple experiment there will be a  
lot of calculations, so it is advisable to use a spreadsheet (such as Excel) for doing 
this.

Mass/g 
0.1 g

Mean 
length/cm

Uncertainty 
in 

length/ cm
Volume/cm3

Uncertainty 
in 

volume/ cm3

124.1 2.4 0.1 14 2

235.2 3.0 0.1 27 3

344.0 3.4 0.1 39 3

463.2 3.7 0.1 51 4

571.2 4.0 0.1 64 5

660.0 4.2 0.1 74 5

You could simply calculate the density of the metal for each cube and find the 
average but there are many advantages to using a graphical method. In this 
example, we know that the mass and volume are related by the equation m  V 
where  is the density.

This means that mass is proportional to volume, so plotting a graph of mass (on 
the y-axis) against volume (on the x-axis) will give a straight line. The gradient 
of the line will be the density and the y-intercept will be zero. Because there are 
uncertainties in the data, we don’t know exactly where to plot the line; for this 
reason we plot error bars on each point as shown in Figure 1.6. This graph has 
been plotted with a computer program (e.g. Graphical Analysis by Vernier) that 
automatically plots the best fit line and the error bars.

The general equation of a straight 
line is
y  mx c
Where m is the gradient and c is 
the y-intercept. Any equation that 
has the same form will also be 
linear.

 Examiner’s hint: It is well worth 
learning how to use a spreadsheet 
programme for analysing data.

 Examiner’s hint: The number 
of decimal places in the data must 
not exceed the uncertainty and the 
uncertainty has been rounded off to 
1 significant figure.

 Examiner’s hint: As with 
spreadsheets, it is also worth practising 
with graph plotting software.

Presenting processed data1.4

Assessment statements
1.2.12  Identify uncertainties as error bars in graphs.
1.2.13  State random uncertainty as an uncertainty range ( ) and represent it 

graphically as an ‘error bar’.
1.2.14  Determine the uncertainties in the gradient and intercepts of a 

straight-line graph.

Table 1.2
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Physics and physical measurement 1

Uncertainties in gradients
We can see from Figure 1.6 that the line shown is not the only straight line that can 
be drawn through the error bars; there are in fact a whole range of them. Using the 
steepest and least steep lines that we can draw will give us the uncertainty in the 
gradient. The computer program also enables us to do that, as shown in Figure 1.7.

The maximum gradient is 10.1 and the minimum is 8.1 so the uncertainty is 

  
(10.1  8.1)

 __________ 2    1 g cm 3

So our final result is that the density of the metal in SI units is 
9000 1000 kg m 3.

Note the number of significant figures is reduced so that it is consistent with the 
uncertainty.

Figure 1.6 Graph of mass vs volume 
with error bars
As we can see, the gradient or slope 
of the line is 8.999 g cm 3; this is the 
density of the metal.

Figure 1.7 Graph of mass vs volume 
with steepest and least steep lines.

200

400

600

20 40 60 80
Volume/cm3

M
as

s/
g

Linear Fit for: Data Set  Mass
m  aV  b
a(Slope): 8.999 g/cm3

b (Y-intercept): 0.00g
Correlation: 0.9998
RMSE: 4.991

To find out more about graph 
plotting visit www.heinemann.
co.uk/hotlinks, enter the express 
code 4426P and click on 
Weblink 1.1.

200

400

600

20 40 60 80
Volume/cm3

M
as

s/
g

Linear Fit for: Data Set  Mass
m  aV  b
a(Slope): 8.999 g/cm3

b (Y-intercept): 0.00 g
Correlation: 0.9998
RMSE: 4.991

Manual Fit for: Data Set  Mass
m  aV  b
a(Slope): 8.099 g/cm3

b (Y-intercept): 23.16 g

Manual Fit for: Data Set  Mass
m  aV  b
a(Slope): 10.10 g/cm3

b (Y-intercept): 35.34 g
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If we look up the density of metals we find that the density of copper is 8920 kg m 3. 
This is only 80 kg m 3 less than our value. We can therefore conclude that within the 
uncertainties of our experiment the cubes could be made of copper.

Percentage uncertainties
In the example above, the uncertainties were expressed as 1000 kg m 3. This is 
called an absolute uncertainty. Uncertainties can also be expressed as a simple 

percentage. In this case the percentage uncertainty would be  (!  1000 ____ 9000   )   100  11%

When you multiply values, you can find the uncertainty of the result by adding the 
percentage uncertainties. However when dealing with tables of data, it is simpler 
to use the method described previously. So if the uncertainty in length is 4%, the 
uncertainty in volume is 3  4%  12%.

Other information from graphs
A graph is not only a way to find a value, it also gives us information about the 
validity of the data. Here are some examples.

An outlier
If you have made a mistake, it will show on the graph as an outlier. This is a point 
that does not fit the line, like the one in Figure 1.8. 

 Examiner’s hint: Even though you 
use absolute uncertainties in all your 
practical work you might be asked how 
to manipulate percentage uncertainties 
in the exam.

9 To measure the volume of an object, two lengths l1 and l2 are measured.
l1  10.25  0.05 cm
l2  15.45  0.05 cm
Calculate:
(a) the % uncertainty in l1
(b) the % uncertainty in l2
(c) the area of the object
(d) the % uncertainty in the area.

Exercise

200

400

600

20 40 60 80
Volume/cm3

M
as

s/
g

Linear Fit for: Data Set  Mass

Figure 1.8 Graph with an outlier.
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Physics and physical measurement 1

A non-zero intercept
If the intercept is supposed to be zero but isn’t, this could be due to a systematic 
error. For example, if all the mass measurements had been 10 g too big, we would 
get an intercept of 10 g as in Figure 1.9.

A non-linear trend
Relationships in physics are not always linear. This is shown by the graph in 
Figure 1.10, where the straight line does not fit, but there is a clear relationship.

So far we have dealt with six different quantities:

 Length

 Time

 Mass

 Volume

 Density

 Displacement

All of these quantities have a size, but displacement also has a direction. Quantities 
that have size and direction are vectors and those with only size are scalars; all 
quantities are either vectors or scalars. It will be apparent why it is important to 
make this distinction when we add displacements together.

Vectors and scalars1.5

Assessment statements
1.3.1  Distinguish between vector and scalar quantities, and give examples of 

each.
1.3.2  Determine the sum or difference of two vectors by a graphical method.
1.3.3  Resolve vectors into perpendicular components along chosen axes.

0

100

10

Figure 1.10 Graph with a non-linear 
trend – the line does not pass through 
the error bars.

Figure 1.9 A non-zero intercept.

0

10

20

30

40

50

3 5 7
Length/m

M
as
s/
kg

Scalar
A quantity with magnitude only.
Vector
A quantity with magnitude and 
direction.

Figure 1.11 Displacements shown on 
a map.

N

B

C

5 km

A
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Example
Consider two displacements one after another as shown in Figure 1.11.
Starting from A walk 4 km west to B, then 5 km north to C.

The total displacement from the start is not 5  4 but can be found by drawing a 
line from A to C. 

We will find that there are many other vector quantities that can be added in the 
same way.

Addition of vectors
Vectors can be represented by drawing arrows. The length of the arrow is 
proportional to the magnitude of the quantity and the direction of the arrow is the 
direction of the quantity.

To add vectors the arrows are simply arranged so that the point of one touches the 
tail of the other. The resultant vector is found by drawing a line joining the free tail 
to the free point.

Example
Figure 1.11 is a map illustrating the different displacements. We can represent the 
displacements by the vectors in Figure 1.12.

Calculating the resultant:
If the two vectors are at right angles to each other then the resultant will be 
the hypotenuse of a right-angled triangle. This means that we can use simple 
trigonometry to relate the different sides. 

You will find cos, sin and tan buttons on your calculator. These are used to 
calculate unknown sides of right-angled triangles.

Sin     
Opposite

 __________ Hypotenuse  

Cos     
Adjacent

 __________ Hypotenuse  

Tan     
Opposite

 ________ 
Adjacent

  

Figure 1.12 Vector addition.

Figure 1.13 

 Examiner’s hint: Not all vectors add 
up to give right-angled triangles but as 
these are the easy ones to solve we will 
consider only these in this course.

Resultant

4 km

5 km

Adjacent

Hypotenuse
Opposite

M01_IBPH_SB_HIGGLB_4426_U01.indd   11 29/6/10   11:48:30



12
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Vector symbols
To show that a quantity is a vector 
we can write it in a special way. In 
textbooks this is often in bold (A) 
but when you write you can put an 
arrow on the top. In physics texts 
the vector notation is often left out. 
This is because if we know that the 
symbol represents a displacement, 
then we know it is a vector and 
don’t need the vector notation to 
remind us.

Exercise

10 Use your calculator to find x in the following triangles.
(a)  (b) 

(c)  (d) 

x

55°
3 cm

50°

x

4 cm

30°

6 cm x 20°

x
3 cm

Pythagoras
The most useful mathematical relationship for finding the resultant of two 
perpendicular vectors is Pythagoras’ theorem.

Hypotenuse2  adjacent2  opposite2

Using trigonometry to solve vector problems
Once the vectors have been arranged point to tail it is a simple matter of applying 
the trigonometrical relationships to the triangles that you get.

Exercise

11 Use Pythagoras’ theorem to find the hypotenuse in the following examples.
(a)  (b) 

(c)  (d) 

3 cm

4 cm

4 cm

4 cm

6 cm

2 cm

2 cm

3 cm

Exercises

Draw the vectors and solve the following problems using Pythagoras’ theorem.
12 A boat travels 4 km west followed by 8 km north. What is the resultant displacement?
13 A plane flies 100 km north then changes course to fly 50 km east. What is the resultant 

displacement?
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Vectors in one dimension
In this course we will often consider the simplest examples where the motion is 
restricted to one dimension, for example a train travelling along a straight track. In 
examples like this there are only two possible directions – forwards and backwards. 
To distinguish between the two directions,we give them different signs (forward 

 and backwards ). Adding vectors is now simply a matter of adding the 
magnitudes, with no need for complicated triangles.

Worked example

If a train moves 100 m forwards along a straight track then 50 m back, what is its 
final displacement?

Solution
Figure 1.15 shows the vector diagram.

The resultant is clearly 50 m forwards.

Subtracting vectors
Now we know that a negative vector is simply the opposite  
direction to a positive vector, we can subtract vector B from  
vector A by changing the direction of vector B and adding  
it to A.

A  B  A  ( B)

Taking components of a vector
Consider someone walking up the hill in Figure 1.17. They walk 5 km up the slope 
but want to know how high they have climbed rather than how far they have 
walked. To calculate this they can use trigonometry.

Height  5  sin 30°

The height is called the vertical component of the displacement.

The horizontal displacement can also be calculated.

Horizontal displacement  5  cos 30°

This process is called ‘taking components of a vector’ and is often used in solving 
physics problems. 

 Examiner’s hint: There isn’t really 
any need to draw vector diagrams 
when doing one-dimensional problems. 
However, you must never forget that the 
sign gives the direction.

Which direction is ?
You can decide for yourself which 
direction you want to be positive 
but generally we follow the 
convention:
Right   Left 
North   South 
Up   Down 

veve
Figure 1.14  The train can only move 
forwards or backwards.

Figure 1.15  Adding vectors in one 
dimension.

100 m

50 m

A
B

A  B

A

B

Figure 1.17  5 km up the hill but how 
high?

5 km

30° A sin A

A cos 

not next to
the angle

next to the
angle

Figure 1.18 An easy way to 
remember which is cos is to say 
that it’s ‘becos it’s next to the angle’.

Figure 1.16 Subtracting vectors.
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Exercises

14 If a boat travels 10 km in a direction 30° to the east of north, how far north has it travelled?

15 On his way to the South Pole, Amundsen travelled 8 km in a direction that was 20° west of south. 
What was his displacement south?

16 A mountaineer climbs 500 m up a slope that is inclined at an angle of 60° to the horizontal. How 
high has he climbed?

1 This question is about measuring the permittivity of free space 0.
The diagram below shows two parallel conducting plates connected to a variable voltage 
supply. The plates are of equal areas and are a distance d apart.

The charge Q on one of the plates is measured for different values of the potential 
difference V applied between the plates. The values obtained are shown in the table 
below. The uncertainty in the value of V is not significant but the uncertainty in Q is 

10%.

V / V Q / nC  10%

10.0 30

20.0 80

30.0 100

40.0 160

50.0 180

(a) Plot the data points opposite on a graph of V (x-axis) against Q (y-axis). (4)

(b) By calculating the relevant uncertainty in Q, add error bars to the data points  
(10.0, 30) and (50.0, 180). (3)

(c) On your graph, draw the line that best fits the data points and has the maximum 
permissible gradient. Determine the gradient of the line that you have drawn. (3)

(d) The gradient of the graph is a property of the two plates and is known as 
capacitance. 
Deduce the units of capacitance. (1)

Practice questions

variable voltage supply d V

 Examiner’s hint: Question 1 is about 
analysing data. It is a typical Paper 2 
question. You don’t have to know 
anything about permittivity to answer it.
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The relationship between Q and V for this arrangement is given by the expression

Q    0A ___ 
d
  V

where A is the area of one of the plates.
In this particular experiment A  0.20  0.05 m2 and d  0.50  0.01 mm.

(e) Use your answer to (c) to determine the maximum value of 0 that this  
experiment yields. (4)

(Total 15 marks)
© International Baccalaureate Organisation

2 A student measures a distance several times. The readings lie between 49.8 cm and 
50.2 cm. This measurement is best recorded as
A 49.8  0.2 cm.
B 49.8  0.4 cm.
C 50.0  0.2 cm.
D 50.0  0.4 cm. (1)

© International Baccalaureate Organisation

3 The time period T of oscillation of a mass m suspended from a vertical spring is given by 
the expression

T  2 √
__

   m __ 
k
    

 where k is a constant.

 Which one of the following plots will give rise to a straight-line graph?
A T 2 against m
B  √

_
 T   against  √

__
 m  

C T against m
D  √

_
 T   against m (1)

© International Baccalaureate Organisation

4 The power dissipated in a resistor of resistance R carrying a current I is equal to I 2R. The 
value of I has an uncertainty of 2% and the value of R has an uncertainty of 10%. 
The value of the uncertainty in the calculated power dissipation is
A 8%.
B 12%.
C 14%.
D 20%. (1)

© International Baccalaureate Organisation

5 An ammeter has a zero offset error. This fault will affect
A neither the precision nor the accuracy of the readings.
B only the precision of the readings.
C only the accuracy of the readings.
D both the precision and the accuracy of the readings. (1)

© International Baccalaureate Organisation
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Physics and physical measurement 1

6 When a force F of (10.0  0.2) N is applied to a mass m of (2.0  0.1) kg, the 

percentage uncertainty attached to the value of the calculated acceleration   F __ m   is
A 2%.
B 5%.
C 7%.
D 10%. (1)

© International Baccalaureate Organisation

7 Which of the following is the best estimate, to one significant digit, of the quantity 
shown below?

  8.1 _______ 
 √

_____
 (15.9)  
  

A 1.5
B 2.0
C 5.8
D 6.0 (1)

© International Baccalaureate Organisation

8 Two objects X and Y are moving away from the point P. The diagram below shows the 
velocity vectors of the two objects.

Which of the following velocity vectors best represents the velocity of object X relative to 
object Y?
   

   

    (1)
© International Baccalaureate Organisation

9 The order of magnitude of the weight of an apple is
A 10 4 N.
B 10 2 N.
C 1 N.
D 102 N. (1)

© International Baccalaureate Organisation

P

Velocity vector for object Y

Velocity vector for object X

A B

C D
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