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2 Mechanics

In Chapter 1, we observed that things move and now we are going to 
mathematically model that movement. Before we do that, we must define some 
quantities that we are going to use.

Displacement and distance
It is important to understand the difference  
between distance travelled and displacement.  
To explain this, consider the route marked  
out on the map shown in Figure 2.1

Displacement is the distance moved in a  
particular direction.

The unit of displacement is the metre (m).

Displacement is a vector quantity.

On the map, the displacement is the length of the straight line from A to B, a 
distance of 5 km west. (Note: since displacement is a vector you should always say 
what the direction is.)

Distance is how far you have travelled from A to B.

The unit of distance is also the metre.

Distance is a scalar quantity.

In this example, the distance travelled is the length of the path taken, which is 
about 10 km.

Sometimes this difference leads to a surprising result. For example, if you run all 
the way round a running track you will have travelled a distance of 400 m but your 
displacement will be 0 m.

In everyday life, it is often more important to know the distance travelled. For 
example, if you are going to travel from Paris to Lyon by road you will want to 
know that the distance by road is 450 km, not that your final displacement will be 

Kinematics2.1

Assessment statements
2.1.1 Define displacement, velocity, speed and acceleration.
2.1.2 Explain the difference between instantaneous and average values of 

speed, velocity and acceleration.
2.1.3 Outline the conditions under which the equations for uniformly 

accelerated motion may be applied.
2.1.9 Determine relative velocity in one and in two dimensions.

N

B A

5 km

Figure 2.1
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336 km SE. However, in physics, we break everything down into its simplest units, 
so we start by considering motion in a straight line only. In this case it is more 
useful to know the displacement, since that also has information about which 
direction you have moved.

Velocity and speed
Both speed and velocity are a measure of how fast a body is moving, but velocity is 
a vector quantity and speed is a scalar.

Velocity is defined as the displacement per unit time.

 velocity  
displacement

 ___________ 
time

  

The unit of velocity is m s 1.

Velocity is a vector quantity.

Speed is defined as the distance travelled per unit time.

 speed  distance _______ 
time

  

The unit of speed is also m s 1.

Speed is a scalar quantity.

Average velocity and instantaneous velocity
Consider travelling by car from the north of Bangkok to the south – a distance 
of about 16 km. If the journey takes 4 hours, you can calculate your velocity to 
be   16

 __ 4    4 km h 1 in a southwards direction. This doesn’t tell you anything about 
the journey, just the difference between the beginning and the end (unless you 
managed to travel at a constant speed in a straight line). The value calculated is the 
average velocity and in this example it is quite useless. If we broke the trip down 
into lots of small pieces, each lasting only one second, then for each second the car 
could be considered to be travelling in a straight line at a constant speed. For these 
short stages we could quote the car’s instantaneous velocity – that’s how fast it’s 
going at that moment in time and in which direction.

Figure 2.2 It’s not possible to take  
this route across Bangkok with a 
constant velocity.

The bus in the photo has a constant 
velocity for a very short time.

Exercise

1 Convert the following speeds into m s 1.
(a) A car travelling at 100 km h 1

(b) A runner running at 20 km h 1
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Measuring velocity
You can measure velocity  
with a photogate connected  
to a timer or computer.  
When a card passes  
through the gate it is  
sensed by the timer,  
switching it on or off. 

 average velocity  distance  ________________________________   
time taken to travel between photogates

  

 instantaneous velocity  length of card  ____________________________   
time for card to pass through gate

  

Velocity is relative
When quoting the velocity of a body, it is important to say what the velocity is 
measured relative to. Consider the people in Figure 2.4

C measures the velocity of A to be 1 m s 1 but to B (moving on the truck towards 
C) the velocity of A is 9 m s 1 (B will see A moving away in a negative direction). 
You might think that A can’t have two velocities, but he can – velocity is relative.
In this example there are two observers, B and C. Each observer has a different 
‘frame of reference’. To convert a velocity, to B ’s frame of reference, we must 
subtract the velocity of B relative to C ; this is 10 m s 1.

So the velocity of A relative to B  1  10  9 m s 1

We can try the same with D who has a velocity of 1 m s 1 measured by C and  
1  10  11 m s 1 measured by B.

This also works in two dimensions as follows:

A now walks across the road as illustrated by the aerial view in Figure 2.5. The 
velocity of A relative to C is 1 m s 1 north.

The velocity of A relative to B can now be found by subtracting the vectors as 
shown in Figure 2.6.

Photogate 1

Distance

Photogate 2

Card

Figure 2.3 Experimental set up for 
measuring velocity.

Figure 2.4 Two observers measuring 
the same velocity.

Figure 2.6 Subtracting vectors gives 
the relative velocity.

Figure 2.5 A now walks across the 
road..

1 m s 1 1 m s 110 m s 1

A DB C

10 m s 1

1 m s 1

B

A C

 Examiner’s hint: Velocity is a vector.
If the motion is in one dimension, the 
direction of velocity is given by its 
sign. Generally, right is positive and left 
negative.

2 An observer standing on a road watches a bird flying east at a velocity of 10 m s 1. A second 
observer, driving a car along the road northwards at 20 m s 1 sees the bird. What is the velocity of 
the bird relative to the driver?

Exercise
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Acceleration
In everyday usage, the word accelerate means to go faster. However in physics:
acceleration is defined as the rate of change of velocity.

acceleration  
change of velocity

  _______________ 
time

  

The unit of acceleration is m s 2.

Acceleration is a vector quantity.

This means that whenever a body changes its velocity it accelerates. This could be 
because it is getting faster, slower or just changing direction. In the example of the 
journey across Bangkok, the car would have been slowing down, speeding up and 
going round corners almost the whole time, so it would have had many different 
accelerations. However, this example is far too complicated for us to consider in 
this course (and probably any physics course). For most of this chapter we will 
only consider the simplest example of accelerated motion, constant acceleration.

Constant acceleration in one dimension
In one-dimensional motion, the acceleration, velocity and displacement are all in 
the same direction. This means they can simply be added without having to draw 
triangles. Figure 2.7 shows a body that is starting from an initial velocity u and 
accelerating at a constant rate to velocity v in t seconds. The distance travelled in 
this time is s. Since the motion is in a straight line, this is also the displacement.

Using the definitions already stated, we can write equations related to this 
example.

Average velocity

From the definition, the average velocity  
displacement

 ___________ 
time

  

So average velocity  s _ t    (1)

Since the velocity changes at a constant rate from the beginning to the end, we can 
also calculate the average velocity by adding the velocities and dividing by two.

Average velocity  
(u  v)

 _______ 2    (2)

Acceleration
Acceleration is defined as the rate of change of velocity.

So a  
(v  u)

 _______ t   (3)

We can use these equations to solve any problem involving constant acceleration. 
However, to make problem solving easier, we can derive two more equations by 
substituting from one into the other. 

Bodies
When we refer to a body in physics 
we generally mean a ball not a 
human body.

u

time  0 time  t

va

s

Figure 2.7 A red ball is accelerated at 
a constant rate.
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Equating equations (1) and(2)

   s _ t   
(u  v)

 _______ 2  

so s  
(u  v) t

 ________ 2   (4)

Rearranging (3) gives v  u  at

If we substitute for v in equation (4) we get s  ut    1 _ 2  at2 (5)

Rearranging (3) again gives t  
(v  u)

 _______ a  

If t is now substituted in equation (4) we get v2  u2  2as (6)

These equations are sometimes known as the suvat equations. If you know any 3 
of suva and t you can find either of the other two in one step.

Worked example

1 A car travelling at 10 m s 1 accelerates at 2 m s 2 for 5 s. What is its displacement?

Solution
The first thing to do is draw a simple diagram like Figure 2.8.

This enables you to see what is happening at a glance rather than reading the text. 
The next stage is to make a list of suvat.
 s  ?
 u  10 m s 1 
 v  ?
 a  2 m s 2

 t  5 s

To find s you need an equation that contains suat. The only equation with all 4 of 
these quantities is s  ut    1 _ 2  at2

Using this equation gives:
 s  10  5    1 _ 2    2  52

 s  75 m

The sign of displacement, velocity and 
acceleration
We must not forget that displacement, velocity and acceleration are vectors. This 
means that they have direction. However, since this is a one-dimensional example, 
there are only two possible directions, forward and backward. We know which 
direction the quantity is in from the sign. 

A positive displacement means that the body has moved right.

A positive velocity means the body is moving to the right.

u  10 m s 1

time  0 time  5 s

a  2 m s 2 Figure 2.8 A simple diagram is always 
the best start.

 Examiner’s hint: You don’t need to 
include units in all stages of a calculation, 
just the answer.

suvat equations

a  
(v  u)

 ______ t  

s  
(u  v) t

 _______ 2  

s  ut    1 _ 2  at2 

v2  u2  2as
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A positive acceleration means that the 
body is either moving to the right and 
getting faster or moving to the left and 
getting slower. This can be confusing, so 
consider the following example.

The car is travelling in a negative direction so the velocities are negative.
u  10 m s 1

v  5 m s 1

t  5 s
The acceleration is therefore given by

a  
(v  u)

 _______ t    5  10 _________ 5    1 m s 2

The positive sign tells us that the acceleration is in a positive direction (right) even 
though the car is travelling in a negative direction (left).

Example
A body with a constant acceleration of 5 m s 2 is travelling to the right with a 
velocity of 20 m s 1. What will its displacement be after 20 s?
 s  ?
 u  20 m s 1

 v  ?
 a  5 m s 2

 t  20 s

To calculate s we can use the equation s  ut    1 _ 2  at2

s  20  20    1 _ 2  ( 5)  202  400  1000  600 m

This means that the final displacement of the body is to the left of the starting 
point. It has gone forward, stopped and then gone backwards.

5 m s 1

time  5 s time  0

u  10 m s 1

Figure 2.9

Figure 2.10 The acceleration is 
negative so pointing to the left.

20 m s 1

5 m s 2

Exercises

3 Calculate the final velocity of a body that starts from rest and accelerates at 5 m s 2 for a distance 
of 100 m.

4 A body starts with a velocity of 20 m s 1 and accelerates for 200 m with an acceleration of 5 m s 2. 
What is the final velocity of the body?

5 A body accelerates at 10 m s 2 reaching a final velocity of 20 m s 1 in 5 s. What was the initial 
velocity of the body?

g
The acceleration due to gravity 
is not constant all over the Earth. 
9.81 m s 2 is the average value. The 
acceleration also gets smaller the 
higher you go. However we ignore 
this change when conducting 
experiments in the lab since labs 
aren’t that high.

To make the examples easier 
to follow, g  10 m s 2 is used 
throughout; you should only use 
this approximate value in exam 
questions if told to do so.

Free fall motion2.2

Assessment statements
2.1.4 Identify the acceleration of a body falling in a vacuum near the Earth’s 

surface with the acceleration g of free fall.
2.1.5 Solve problems involving the equations of uniformly accelerated 

motion.
2.1.6 Describe the effects of air resistance on falling objects.
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Although a car was used in one of the previous illustrations, the acceleration of 
a car is not usually constant, so we shouldn’t use the suvat equations. The only 
example of constant acceleration that we see in everyday life is when a body is 
dropped. Even then the acceleration is only constant for a short distance.

Acceleration of free fall
When a body is allowed to fall freely we say it is in free fall. Bodies falling freely on 
the Earth fall with an acceleration of about 9.81 m s 2. (It depends where you are.) 
The body falls because of gravity. For that reason we use the letter g to denote this 
acceleration. Since the acceleration is constant, we can use the suvat equations to 
solve problems.

Measuring g
Measuring g by timing a ball falling from 
different heights is a common physics 
experiment that you could well perform in the 
practical programme of the IB course. There 
are various different ways of doing this but a 
common method is to use a timer that starts 
when the ball is released and stops when it hits 
a platform. An example of this apparatus is 
shown in the photo. The distance travelled by 
the ball and the time taken are related by the 
suvat equation s  ut    1 _ 2  at2. This simplifies 
to s  1

 _ 2  at2 since the initial velocity is zero. 
This means that s is proportional to t2 so if 
you plot a graph of s against t2 you will get a 
straight line whose gradient is   1 _ 2  g.

In these calculations use g  10 m s 2.

6 A ball is thrown upwards with a velocity of 30 m s 1. What is the displacement of the ball after 2 s?

7 A ball is dropped. What will its velocity be after falling 65 cm?

8 A ball is thrown upwards with a velocity of 20 m s 1. After how many seconds will the ball return 
to its starting point?

Exercises

The effect of air resistance
If you jump out of a plane (with 
a parachute on) you will feel the 
push of the air as it rushes past you. 
As you fall faster and faster, the air 
will push upwards more and more 
until you can’t go any faster. At this 
point you have reached terminal 
velocity. We will come back to this 
example after introducing forces.

Free fall apparatus.

Graphical representation of motion2.3

Assessment statements
2.1.7 Draw and analyse distance–time graphs, displacement–time graphs, 

velocity–time graphs and acceleration–time graphs.
2.1.8 Calculate and interpret the gradients of displacement–time graphs and 

velocity–time graphs, and the areas under velocity–time graphs and 
acceleration–time graphs.
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Graphs are used in physics to give a visual representation of relationships. In 
kinematics they can be used to show how displacement, velocity and acceleration 
change with time. Figure 2.11 shows the graphs for four different examples of 
motion. They are placed vertically since they all have the same time axis.

Line A
A body that is not moving. 
Displacement is always the same.
Velocity is zero.
Acceleration is zero.

Line B
A body that is travelling with a constant positive velocity.
Displacement increases linearly with time.
Velocity is a constant positive value.
Acceleration is zero.

Line C
A body that has a constant negative velocity.
Displacement is decreasing linearly with time.
Velocity is a constant negative value.
Acceleration is zero.

Line D
A body that is accelerating with constant acceleration.
Displacement is increasing at a non-linear rate. The shape of this line is a parabola 
since displacement is proportional to t2 (s  ut    1 _ 2  at2).
Velocity is increasing linearly with time.
Acceleration is a constant positive value.

The best way to go about sketching graphs is to split the motion into sections 
then plot where the body is at different times; joining these points will give the 
displacement–time graph. Once you have done that you can work out the v–t and 
a–t graphs by looking at the s–t graph rather than the motion.

Gradient of displacement–time

The gradient of a graph is    
change in y

 __________ 
change in x

  

   y ___ 
x
  

In the case of the displacement–time graph this will give

 gradient    s ___ 
t
  

This is the same as velocity.

So the gradient of the displacement–time graph equals the velocity. Using this 
information, we can see that line A in Figure 2.12 represents a body with greater 
velocity than line B and that since the gradient of line C is increasing, this must be 
the graph for an accelerating body. 

D B

A

C
time

displacement

D

B

C

time

A

velocity

D

time
AB C

acceleration

Figure 2.11 Graphical representation 
of motion.

C

B

A

time

displacement

Figure 2.12

 Examiner’s hint: You need to be 
able to

 figure out what kind of motion a body 
has by looking at the graphs

 sketch graphs for a given motion. 
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Instantaneous velocity
When a body accelerates its velocity is constantly changing. The displacement–
time graph for this motion is therefore a curve. To find the instantaneous velocity 
from the graph we can draw a tangent to the curve and find the gradient of the 
tangent as shown in Figure 2.13.

Area under velocity–time graph
The area under the velocity–time graph for the body travelling at constant velocity 
v shown in Figure 2.14 is given by

area  v t

But we know from the definition of velocity that v  s ___ 
t
   

Rearranging gives s  v t so the area under a velocity–time graph gives the 
displacement.

This is true not only for simple cases such as this but for all examples.

Gradient of velocity–time graph
The gradient of the velocity–time graph is given by   v ___ 

t
  . This is the same as 

acceleration.

Area under acceleration–time graph
The area under an acceleration–time graph in Figure 2.15 is given by a t. But we 

know from the definition of acceleration that a    
(v  u)

 _______ t  

Rearranging this gives v  u  a t so the area under the graph gives the change in 
velocity.

If you have covered calculus in your maths course you may recognise these equations:

v    ds __ 
dt

  a    dv __ 
dt

      d
2s ___ 

dt2   and s  ∫vdt, v  ∫adt

∆s

∆t
time

displacement

Figure 2.13

Figure 2.15

Figure 2.14

∆t time

velocity

v

∆t time

acceleration

a

 9 Sketch a velocity–time graph for a body starting from rest and accelerating at a constant rate 
to a final velocity of 25 ms 1 in 10 seconds. Use the graph to find the distance travelled and the 
acceleration of the body.

10 Describe the motion of the body whose  
velocity–time graph is shown in Figure 2.16.  
What is the final displacement of the body?

Exercises

10 

10  

time/s

velocity/m s 1

3 6

9

Figure 2.16
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Example 1: the suvat example
As an example let us consider the motion we looked at when deriving the suvat 
equations.

Displacement–time
The body starts with velocity u and travels to the right with constant acceleration, 
a for a time t. If we take the starting point to be zero displacement, then the 
displacement–time graph starts from zero and rises to s in t seconds. We can 
therefore plot the two points shown in Figure 2.18. The body is accelerating so the 
line joining these points is a parabola. The whole parabola has been drawn to show 
what it would look like – the reason it is offset is because the body is not starting 
from rest. The part of the curve to the left of the origin tells us what the particle 
was doing before we started the clock.

Velocity–time
Figure 2.19 is a straight line with a positive 
gradient showing that the acceleration is 
constant. The line doesn’t start from the 
origin since the initial velocity is u. 

The gradient of this line is   
(v  u)

 _______ t   which 
we know from the suvat equations is 
acceleration.

The area under the line makes the shape of a trapezium. The area of this 
trapezium is   1 _ 2  (v u)t. This is the suvat equation for s.

Acceleration–time
The acceleration is constant so the acceleration–time graph is simply a horizontal 
line as shown in Figure 2.20. The area under this line is a  t which we know from 
the suvat equations equals (v  u).

Example 2: The bouncing ball

Consider a rubber ball dropped from some position above the ground A onto a 
hard surface B. The ball bounces up and down several times. Figure 2.21 shows the 

u

time  0 time  t

va

s

s

t

displacement

time

Figure 2.18

Figure 2.19

Figure 2.21

Figure 2.17 A body with constant 
acceleration.

Negative time
Negative time doesn’t mean going 
back in time – it means the time 
before you started the clock.

v

u

time

velocity

t

Figure 2.20

a

time

acceleration

t

A

A

B
B

C

D time

displacement
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displacement–time graph for 4 bounces. From the graph we see that the ball starts 
above the ground then falls with increasing velocity (as deduced by the increasing 
negative gradient). When the ball bounces at B the velocity suddenly changes from 
negative to positive as the ball begins to travel back up. As the ball goes up, its 
velocity gets less until it stops at C and begins to fall again.

Example 3: A ball falling with air resistance
Figure 2.22 represents the motion of a ball that is dropped several hundred metres 
through the air. It starts from rest and accelerates for some time. As the ball 
accelerates, the air resistance gets bigger, which prevents the ball from getting any 
faster. At this point the ball continues with constant velocity.

11 By considering the gradient of the displacement–time graph in Figure 2.21 plot the velocity–
time graph for the motion of the bouncing ball.

Exercise

12 By considering the gradient of the displacement–time graph plot the velocity–time graph for the 
motion of the falling ball.

Exercise

time

displacement Figure 2.22

Projectile motion2.4

Assessment statements
9.1.1 State the independence of the vertical and the horizontal components 

of velocity for a projectile in a uniform field.
9.1.2 Describe and sketch the trajectory of projectile motion as parabolic in 

the absence of air resistance.
9.1.3 Describe qualitatively the effect of air resistance on the trajectory of a 

projectile.
9.1.4 Solve problems on projectile motion.

To view a simulation that enables 
you to plot the graphs as you 
watch the motion, visit  
www.heinemann.co.uk/hotlinks, 
enter the express code 4426P and 
click on Weblink 2.1.
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We all know what happens when a ball is thrown; it follows a curved path  
like the one in the photo below. We can see from this photo that the path  
is parabolic, and later we will show why that is the case.

Modelling projectile motion
All examples of motion up to this point have been in one dimension but  
projectile motion is two-dimensional. However, if we take components  
of all the vectors vertically and horizontally, we can simplify this into two 
simultaneous one-dimensional problems. The important thing to realise 
is that the vertical and horizontal components are independent of each  
other; you can test this by dropping a stone off a cliff and throwing one  
forward at the same time, they both hit the bottom together. The  
downward motion is not altered by the fact that one is also moving  
forward.

Consider a ball that is projected at an angle  to the horizontal, as shown  
in Figure 2.23. We can split the motion into three parts, beginning, middle  
and end, and analyse the vectors representing displacement, velocity and  
time at each stage. Note that since the path is symmetrical, the motion on  
the way down is the same as the way up.

A stroboscopic photograph of a 
projected ball.

A

B

C

v

R
Range

h
Max height

v

g

g

Figure 2.23 A projectile launched at 
an angle .
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Horizontal components

At A (time  0) At B (time    t __ 
2
  ) At C (time  t)

Displacement zero

Velocity v cos 
Acceleration 0

Displacement R __ 
2
  

Velocity v cos 
Acceleration 0

Displacement R

Velocity v cos 
Acceleration 0

Vertical components

At A At B At C

Displacement zero
Velocity v sin 
Acceleration g

Displacement h
Velocity zero
Acceleration g

Displacement zero
Velocity v sin 
Acceleration g

We can see that the vertical motion is constant acceleration and the horizontal 
motion is constant velocity. We can therefore use the suvat equations.

suvat for horizontal motion
Since acceleration is zero there is only one equation needed to define the motion

suvat A to C

Velocity v  s _ t  
R  v cos t

suvat for vertical motion
When considering the vertical motion it is worth splitting the motion into two parts.

suvat At B At C

s  1 _ 2  (u v)t

v2 u2 2as

s ut  1 _ 2  at2

a    v u ______ t  

h  1 _ 2  (v sin )  t __ 
2
  

0 v2 sin2  2gh

h v sin t  1 _ 2  g ("  t __ 
2
   ) 2

g v sin  0 _________ 

  t __ 
2
  
  

0  1 _ 2  (v sin  v sin )t

( v sin )2 (v sin )2 0

0 v sin t    1 _ 2  gt2

g v sin  v sin _______________ 
t
  

Some of these equations are not very useful since they simply state that 0  0. 
However we do end up with three useful ones (highlighted) :

R  v cos  t (1)
0  v2 sin 2   2gh or h  v

2 sin2 _______ 2g   (2)

0  v sin  t    1 _ 2  gt2 or t  2v sin ______ g   (3)

Solving problems
In a typical problem you will be given the magnitude and direction of the initial 
velocity and asked to find either the maximum height or range. To calculate h 
you can use equation (2) but to calculate R you need to find the time of flight so 
must use (3) first (you could also substitute for t into equation (1) to give a fourth 
equation but maybe we have enough equations already).

You do not have to remember a lot of equations to solve a projectile problem. If 
you understand how to apply the suvat equations to the two components of the 
projectile motion, you only have to remember the suvat equations (and they are in 
the databook).

Parabolic path
Since the horizontal displacement 
is proportional to t the path has the 
same shape as a graph of vertical 
displacement plotted against time. 
This is parabolic since the vertical 
displacement is proportional to t2.

Maximum range
For a given value of v the maximum 
range is when v cos  t is a 
maximum value. Now t  2v sin ______ g  . 
If we substitute this for t we get 

R  2v2 cos  sin ___________ g  . 

This is a maximum when cos  sin  
is maximum, which is when  

  45°.
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Worked example

1 A ball is thrown at an angle of 30° to the horizontal at a speed of 20 m s 1. 
Calculate its range and the maximum height reached.

2 A ball is thrown horizontally from a cliff top with a horizontal speed of 
10 m s 1. If the cliff is 20 m high what is the range of the ball?

Solution
1 First, as always, draw a diagram, including labels defining all the quantities 

known and unknown.

Now we need to find the time of flight. If we apply s  ut    1 _ 2  at 2 to the whole 
flight we get 

t  2v sin ______ g    
(2  20  sin 30°)

  _______________ 10    2 s

We can now apply s  vt to the whole flight to find the range:

R  v cos t  20  cos 30°  2  34.6 m

Finally to find the height, we use s  ut    1 _ 2  at2 to the vertical motion, but 
remember, this is only half the complete flight so the time is 1 s.

h  v sin t    1 _ 2  gt2  20  sin 30°  1    1 _ 2    10  12  10  5  5 m

2 This is an easy one since there aren’t any angles 
to deal with. The initial vertical component 
of the velocity is zero and the horizontal 
component is 10 m s 1. To calculate the 
time of flight we apply s  ut    1 _ 2  at2 to the 
vertical component. Knowing that the final 
displacement is 20 m this gives

20 m  0    1 _ 2  gt2 so t  √
________

   
(2  20)

 ________ 10      2 s

We can now use this value to find the range by 
applying the formula s  vt to the horizontal 
component: R  10  2  20 m

Exercises

13 Calculate the range of a projectile thrown at an angle of 60° to the horizontal with velocity 30 m s 1.

14 You throw a ball at a speed of 20 m s 1.
(a) At what angle must you throw it so that it will just get over a wall that is 5 m high?
(b) How far away from the wall must you be standing?

15 A gun is aimed so that it points directly at the centre of a target 200 m away. If the bullet travels 
at 200 m s 1 how far below the centre of the target will the bullet hit?

16 If you can throw a ball at 20 m s 1 what is the maximum distance you can throw it?

If you have ever played golf you will 
know it is not true that the maximum 
range is achieved with an angle of 45°, 
it’s actually much less. This is because 
the ball is held up by the air like an 
aeroplane is. In this photo Alan Shepard 
is playing golf on the moon. Here the 
maximum range will be at 45°. 

10 m s 1

20 m

R

20 m s 1

30°

h

R

To view a simulation of projectile 
motion, visit 
www.heinemann.co.uk/hotlinks, 
enter the express code 4426P and 
click on Weblink 2.2.
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Projectile motion with air resistance
In all the examples above we have ignored the fact that the air will resist the 
motion of the ball. The actual path of a ball including air resistance is likely to be 
as shown in Figure 2.24.

Notice both the height and range are less. It is also no longer a parabola – the way 
down is steeper than the way up. 

Forces
From experience, we know that things don’t seem to move unless we push them, 
so movement is related to pushing. In this next section we will investigate this 
relationship.

What is a force?
A force is simply a push or a pull.

The unit of force is the newton (N).

Force is a vector quantity.

You might believe that there are hundreds of different ways to push or pull an 
object but there are actually surprisingly few.

1. Tension
If you attach a rope to a body and pull it, the rope is in tension. This is also the 
name of the force exerted on the body.

Figure 2.24

Figure 2.25 The force experienced by 
the block is tension, T.

Without air
resistance

With air
resistance

The size of one newton
If you hold an object of mass 100 g 
in your hand then you will be 
exerting an upward force of about 
one newton (1 N).

Forces and dynamics2.5

Assessment statements
2.2.1 Calculate the weight of a body using the expression W  mg.
2.2.2 Identify the forces acting on an object and draw free body diagrams 

representing the forces acting.
2.2.3 Determine the resultant force in different situations.

T
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2. Normal force
Whenever two surfaces are in contact, there will be a force between them (if not 
then they are not in contact). This force acts at right angles to the surface so is 
called the normal force.

3. Gravitational force
We know that all objects experience a force that pulls them downwards; we call 
this force the weight. The direction of this force is always towards the centre of the 
Earth. The weight of a body is directly proportional to the mass of the body.
W  mg where g  the acceleration of free fall. 

You will discover why this is the case later in the chapter.

4. Friction force
Whenever two touching surfaces move, or attempt to move, relative to each other, 
there is a force that opposes the motion. This is called frictional force. The size of 
this force is dependent on the material of the surfaces and how much force is used 
to push them together.

5. Upthrust
Upthrust is the name of the force experienced by a body immersed in a fluid (gas 
or liquid). This is the force that pushes up on a boat enabling it to float in water. 
The size of this force is equal to the weight of fluid displaced by the boat.

Figure 2.26 The man pushes the 
block with his hands. The force is called 
the normal force, N. N

Figure 2.27 This box is pulled 
downwards by gravity. We call this force 
the weight, W.

Figure 2.28 This box sliding along the 
floor will slow down due to the friction, 
F, between it and the floor.

Figure 2.29 Upthrust U depends on 
how much water is displaced.

W

U

u

Where to draw forces
It is important that you draw the 
point of application of the forces 
in the correct place. Notice where 
the forces are applied in these 
diagrams.

F

v
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6. Air resistance
Air resistance is the force that opposes the motion of bodies through the air. This 
force is dependent on the speed, size and shape of the body.

Free body diagrams
Problems often involve more than one body and more than one force. To keep 
things simple we always draw each body separately and only the forces acting on 
that body, not the forces that body exerts on something else. This is called a free 
body diagram.

A good example of this is a block resting on a ramp 
as shown in Figure 2.30. The block will also exert 
a force on the slope but this is not shown, since it 
is a free body diagram of the block not the ramp. 
Another common example that we will come across 
many times is a mass swinging on the end of a rope, 
as shown in Figure 2.31.

Speed skiers wear special clothes and 
squat down like this to reduce air 
resistance.

W

F

N

Figure 2.30

Figure 2.31

W

T

Fixed end

17 Draw free body diagrams for 
(a) a box resting on the floor
(b) the examples shown below

 i ii

(c) a free fall parachutist falling through the air
(d) a boat floating in water.

Exercise
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Adding forces
Force is a vector quantity, so if two forces act on the same body you must add 
them vectorially as with displacements and velocities.

Examples
1 A body is pulled in two opposing directions by two ropes as shown in 

Figure 2.32. The resultant force acting is the vector sum of the forces.

 The sum is found by arranging the vectors point to tail. This gives a resultant of 
2 N to the left.

2 If a body is pulled by two perpendicular ropes as  
in Figure 2.33, then the vector addition gives a  
triangle that can be solved by Pythagoras. 

Balanced forces
If the resultant force on a body is zero, the forces are said to be balanced. For 
example, if we add together the vectors representing the forces on the box in Figure 
2.34 then we can see that they add up to zero. The forces are therefore balanced. 

This can lead to some complicated triangles so it is easier to take components of the 
forces; if the components in any two perpendicular directions are balanced, then 
the forces are balanced. Figure 2.35 shows how this would be applied to the same 
example. To make things clear, the vectors have been drawn away from the box.

Vertical components add up to zero.
F sin   N cos W  0
W  F sin   N cos 
Horizontal components add up to zero.
0  F cos   N sin   0
F cos   N sin 
So we can see that 

forces up  forces down
forces left  forces right

4 N

3 N

5 N

4 N
3 N

Figure 2.33 

6 N 4 N

6 N

4 N 2 N

Figure 2.32

Exercise

18 Find the resultant force in the following examples:

(a)                                      (b)10 N

10 N

10 N

3 N

5 N

Figure 2.34

N
F

W

Figure 2.35

W F N
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 2.6 Newton’s laws of motion

We now have the quantities to enable us to model motion and we have observed 
that to make something start moving we have to exert a force – but we haven’t 
connected the two. Newton’s laws of motion connect motion with its cause. In 
this course there are certain fundamental concepts that everything else rests upon, 
Newton’s laws of motion are among the most important of these. 

Newton’s first law
A body will remain at rest or moving with constant velocity unless acted upon 
by an unbalanced force. 

To put this the other way round, if the forces on a body are unbalanced, then it will 
not be at rest or moving with constant velocity. If the velocity is not constant then 
it is accelerating.

19 A ball of weight 10 N is suspended on a string and pulled to one side by another horizontal string 
as shown in Figure 2.36. If the forces are balanced:

(a) write an equation for the horizontal components of the forces acting on the ball

(b) write an equation for the vertical components of the forces acting on the ball

(c) use the second equation to calculate the tension in the upper string, T

(d) use your answer to (c) plus the first equation to find the horizontal force F.

20 The condition for the forces to be balanced is that the sum  
of components of the forces in any two perpendicular  
components is zero. In the ‘box on a ramp’ example the  
vertical and horizontal components were taken.  
However, it is sometimes more convenient to consider  
components parallel and perpendicular to the ramp.

 Consider the situation in Figure 2.37. If the forces on this  
box are balanced:

(a) write an equation for the components of the forces  
parallel to the ramp

(b) write an equation for the forces perpendicular to the ramp

(c) use your answers to find the friction (F) and normal force (N).

21 A rock climber is hanging from a rope attached to the cliff by two bolts as  
shown in Figure 2.38. If the forces are balanced 

(a) write an equation for the vertical component of the forces on the knot

(b) write an equation for the horizontal forces exerted on the knot

(c) calculate the tension T in the ropes joined to the bolts.

 The result of this calculation shows why ropes should not be connected in this way.

Exercises

F

T

10 N

30°

Figure 2.36

Figure 2.37

N
F

50 N

30°

Figure 2.38

600 N

knot

80° 80°
TT

Assessment statements
2.2.4 State Newton’s first law of motion.
2.2.5 Describe examples of Newton’s first law.
2.2.6 State the condition for translational equilibrium.
2.2.7 Solve problems involving translational equilibrium.

Using laws in physics
A law in physics is a very useful 
tool. If applied properly, it enables 
us to make a very strong argument 
that what we say is true. If asked 
‘will a box move?’ you can say that 
you think it will and someone else 
could say it won’t. You both have 
your opinions and you would then 
argue as to who is right. However, 
if you say that Newton’s law says it 
will move, then you have a much 
stronger argument (assuming you 
have applied the law correctly).
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We know from experience that things don’t start moving unless we push them, but it’s 
not obvious from observation that things will continue moving with constant velocity 
unless acted upon by an unbalanced force. Usually, if you give an object a push it 
moves for a bit and then stops. This is because of friction. It would be a very different 
world without friction, as everyone would be gliding around with constant velocity, 
only able to stop themselves when they grabbed hold of something. Friction not only 
stops things moving but enables them to get going. If you stood in the middle of a 
friction-free room, you wouldn’t be able to move. It is the friction between your feet 
and the floor that pushes you forward when you try to move your feet backwards.

Examples
1 Mass on a string
 If a mass is hanging at rest on the end of a string as in Figure 2.39 then 

Newton’s first law says the forces must be balanced. This means the  
Force up  Force down.

 T  mg

2 Car travelling at constant velocity
 If the car in Figure 2.40 is travelling at constant velocity, then Newton’s first law 

says the forces must be balanced.

 Force up  Force down
 N  mg (not drawn on diagram)

 Force left  Force right
 F  Fa

3 The parachutist
 If the free fall parachutist in Figure 2.41  

descends at a constant velocity then  
Newton’s first law says that the forces  
must be balanced.

 Force up  Force down
 Fa mg

Translational equilibrium
If all the forces on a body are balanced, the body is said to be in translational 
equilibrium. The bodies in the previous three examples were all therefore in 
translational equilibrium.

mg

T

Figure 2.39

Figure 2.40 Notice that the friction 
acts forwards, this is because the 
wheels are trying to turn backwards 
and friction resists this motion by acting 
forwards.

Friction, F

Air resistance, 
Fa

Figure 2.41 A skydiver at terminal velocity.

Fa

mg

Exercises

22 By resolving the vectors into components, calculate if the following bodies are in translational 
equilibrium or not. If not, calculate the resultant force.

(a)  (b)

30°

10 N

1 N

8.66 N

4 N

6 N4 N

60°

30°
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Rotation
When a body is in translational equilibrium it means that its centre will not 
move. However, it can rotate about the centre, as in the example shown in  
Figure 2.42.

Newton’s first law says that a body will accelerate if an unbalanced force is 
applied to it. Newton’s second law tells us how big the acceleration will be and 
in which direction. Before we look in detail at Newton’s second law we should 
look at the factors that affect the acceleration of a body when an unbalanced 
force is applied. Let us consider the example of catching a ball. When we catch 
the ball we change its velocity, Newton’s first law tells us that we must therefore 
apply an unbalanced force to the ball. The size of that force depends upon 
two things, the mass and the velocity. A heavy ball is more difficult to stop 
than a light one travelling at the same speed, and a fast one is harder to stop 
than a slow one. Rather than having to concern ourselves with two quantities 
we will introduce a new quantity that incorporates both mass and velocity, 
momentum.

Momentum (p)
Momentum is defined as the product of mass and velocity.

p  mv 

The unit of momentum is kg m s 1.
Momentum is a vector quantity.

23 If the following two examples are in equilibrium, calculate the unknown forces F1, F2 and F3.

(a)  (b)6 N

F1

6 N

45°

45°

60 N

20 N

F2

30°

F3

50 N

50 N

Figure 2.42 The forces are balanced 
but the body will rotate.

The relationship between force and 
acceleration

2.7

Assessment statements
2.2.10 Define linear momentum and impulse.
2.2.8 State Newton’s second law of motion.
2.2.9 Solve problems involving Newton’s second law.
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Impulse
When you get hit by a ball the effect it has on you is greater if the ball bounces off 
you than if you catch it. This is because the change of momentum is greater when 
the ball bounces, as shown in Figure 2.43. 

The unit of impulse is kg m s 1.

Impulse is a vector.

Red ball
Momentum before  mv

Momentum after  mv (remember momentum is a vector)

Change in momentum  mv  mv  2mv

Blue ball
Momentum before  mv

Momentum after  0

Change in momentum  0  mv  mv

The impulse is defined as the change of momentum. 

Newton’s second law
The rate of change of momentum of a body is directly proportional to the 
unbalanced force acting on that body and takes place in same direction.

Let us once again consider the ball with a constant force acting on it as in 
Figure 2.44.

Firstly Newton’s first law tells us that there must be an unbalanced force acting on 
the ball since it is accelerating. 

Newton’s second law tells us that the size of the unbalanced force is directly 
proportional to the rate of change of momentum. We know that the acceleration is 
constant, which means the rate of change of velocity is constant; this implies that 
the rate of change of momentum is also constant, so the force, F must be constant 
too.

m

v

m

v

Before

v

After

Figure 2.43 The change of 
momentum of the red ball is greater.

Exercises

24 A ball of mass 200 g travelling at 10 m s 1 bounces off a wall. If after hitting the wall it travels at 
5 m s 1, what is the impulse?

25 Calculate the impulse on a tennis racket that hits a ball of mass 67 g travelling at 10 m s 1 so that 
is comes off the racket at a velocity of 50 m s 1.

Unit of momentum
If F  change in momentum /time 
then momentum  force  time
So the unit of momentum is N s. 
This is the same as kg m s 1.

u

time  0 time  t

va

s

F F

Figure 2.44
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If the ball has mass m we can calculate the change of momentum of the ball.

Initial momentum  mu

Final momentum  mv

Change in momentum  mv  mu

The time taken is t so the rate of change of momentum  mv  mu ________ t  

This is the same as   
m(v  u)

 ________ t    ma

Newton’s second law says that the rate of change of momentum is proportional to 
the force, so F  ma.

To make things simple the newton is defined so that the constant of 
proportionality is equal to 1 so:

F  ma

So when a force is applied to a body in this way, Newton’s second law can be 
simplified to:

The acceleration of a body is proportional to the force applied and inversely 
proportional to its mass.

Not all examples are so simple. Consider a jet of water hitting a wall as in  
Figure 2.45. The water hits the wall and loses its momentum, ending up in a 
puddle on the floor. 

Newton’s first law tells us that since the velocity of the water is changing, there 
must be a force on the water,

Newton’s second law tells us that the size of the force is equal to the rate of change 
of momentum. The rate of change of momentum in this case is equal to the 
amount of water hitting the wall per second multiplied by the change in velocity; 
this is not the same as ma. For this reason it is best to use the first, more general 
statement of Newton’s second law, since this can always be applied.

However, in this course most of the examples will be of the F  ma type.

Examples
1. Elevator accelerating upwards
An elevator has an upward acceleration of 1 m s 2. If the mass of the elevator is 
500 kg, what is the tension in the cables pulling it up?

First draw a free body diagram as in Figure 2.46. Now we can see what forces are 
acting. Newton’s first law tells us that the forces must be unbalanced. Newton’s 
second law tells us that the unbalanced force must be in the direction of the 
acceleration (upwards). This means that T is bigger than mg. 

Newton’s second law also tells us that the size of the unbalanced force equals ma so 
we get the equation

 T  mg  ma

Rearranging gives 

 T  mg  ma

 500  10  500  1

 5500 N

The newton
The fact that a 100 g mass has a 
weight of approximately 1 N is 
coincidental; 1 N is actually defined 
as the force that would cause a 1 kg 
body to accelerate at 1 ms 2.

v

Figure 2.45

Figure 2.46 An elevator accelerating 
up. This could either be going up 
getting faster or going down getting 
slower.

T

mg

a
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2. Elevator accelerating down
The same elevator as in example 1 now has a downward acceleration of 1 m s 2 as 
in Figure 2.47.

This time Newton’s laws tell us that the weight is bigger than the tension so  
mg  T  ma 

Rearranging gives 

 T  mg  ma 

 500  10  500  1 

 4500 N

3. Joined masses
Two masses are joined by a rope. One of the masses sits on a frictionless table, the 
other hangs off the edge as in Figure 2.48.

M is being dragged to the edge of the table by m.

Both are connected to the same rope so T is the same for both masses, this also 
means that the acceleration a is the same. 

We do not need to consider N and Mg for the mass on the table because these 
forces are balanced. However the horizontally unbalanced force is T.

Applying Newton’s laws to the mass on the table gives

 T  Ma

The hanging mass is accelerating down so mg is bigger than T. Newton’s second 
law implies that mg  T  ma

Substituting for T gives mg  Ma  ma so a  
mg
 _______ M  m  

4. The free fall parachutist
After falling freely for some time, a free fall 
parachutist whose weight is 60 kg opens her 
parachute. Suddenly the force due to air resistance 
increases to 1200 N. What happens? 

Looking at the free body diagram in Figure 2.49 
we can see that the forces are unbalanced and that 
according to Newton’s second law the acceleration, 
a, will be upwards. 

The size of the acceleration is given by

 ma  1200  600  60  a

so a   10 m s 2

The acceleration is in the opposite direction to the 
motion. This will cause the parachutist to slow 
down. As she slows down, the air resistance gets less 
until the forces are balanced. She will then continue 
down with a constant velocity.

T

mg

a

Figure 2.47 The elevator with 
downward acceleration.

Figure 2.48

N

T

T

aMg

mg

Figure 2.49 The parachutist 
just after opening the 
parachute.

1200 N

600 N
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When dealing with Newton’s first and second laws, we are careful to consider only 
the body that is experiencing the forces, not the body that is exerting the forces. 
Newton’s third law relates these forces.

If body A exerts a force on body B then body B will exert an equal and opposite 
force on body A.

26 The helium in a balloon causes an upthrust of 0.1 N. If the mass of the balloon and helium is 6 g, 
calculate the acceleration of the balloon.

27 A rope is used to pull a felled tree (mass 50 kg) along the ground. A tension of 1000 N causes the 
tree to move from rest to a velocity of 0.1 m s 1 in 2 s. Calculate the force due to friction acting on 
the tree.

28 Two masses are arranged on a frictionless table as shown in Figure 2.50. Calculate:

(a) the acceleration of the masses

(b) the tension in the string.

29 A helicopter is lifting a load of mass 1000 kg with a rope. The rope is strong enough to hold a 
force of 12 kN. What is the maximum upward acceleration of the helicopter?

30 A person of mass 65 kg is standing in an elevator that is accelerating upwards at 0.5 m s 2.  
What is the normal force between the floor and the person?

31 A plastic ball is held under the water by a child in a swimming pool. The volume of the ball is 
4000 cm3.

(a) If the density of water is 1000 kg m 3, calculate the upthrust on the ball (remember  
upthrust  weight of fluid displaced).

(b) If the mass of the ball is 250 g, calculate the theoretical acceleration of the ball when it is 
released. Why won’t the ball accelerate this quickly in a real situation?

Exercise

10 kg

5 kg

Figure 2.50

Newton’s third law2.8

Assessment statements
2.2.14 State Newton’s third law of motion.
2.2.15 Discuss examples of Newton’s third law.
2.2.12 State the law of conservation of linear momentum.
2.2.13 Solve problems involving momentum and impulse.
2.2.11 Determine the impulse due to a time–varying force by interpreting a 

force–time graph.

Incorrect statements
It is very important to realise that 
Newton’s third law is about two 
bodies. Avoid statements of this 
law that do not mention anything 
about there being two bodies.
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So if someone is pushing a car with a force F as shown in Figure 2.51 the car will 
push back on the person with a force F. In this case both of these forces are the 
normal force.

You might think that since these forces are equal and opposite, they will be 
balanced, and in that case how does the person get the car moving? This is wrong; 
the forces act on different bodies so can’t balance each other.

Examples
1. A falling body
A body falls freely towards the ground as in Figure 2.52. If we ignore air resistance, 
there is only one force acting on the body – the force due to the gravitational 
attraction of the Earth, that we call weight.

Applying Newton’s third law:

If the Earth pulls the body down, then the body must pull the Earth up with an 
equal and opposite force. We have seen that the gravitational force always acts on 
the centre of the body, so Newton’s third law implies that there must be a force 
equal to W acting upwards on the centre of the Earth as in Figure 2.53.

2. A box rests on the floor
A box sits on the floor as shown in Figure 2.54. Let us apply Newton’s third law to 
this situation.

There are two forces acting on the box.

Normal force: The floor is pushing up on the box with a force N. According to 
Newton’s third law the box must therefore push down on the floor with a force of 
magnitude N.

F F

Figure 2.51  The man pushes the car 
and the car pushes the man.

Figure 2.52  A falling body pulled 
down by gravity.

W

Figure 2.53 The Earth pulled up by 
gravity.

W

Figure 2.54 Forces acting on a box 
resting on the floor.

W

N
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Weight: The Earth is pulling the box down with a force W. According to Newton’s 
third law, the box must be pulling the Earth up with a force of magnitude W as 
shown in Figure 2.55.

3. Recoil of a gun
When a gun is fired the velocity of the bullet changes. Newton’s first law implies 
that there must be an unbalanced force on the bullet; this force must come from 
the gun. Newton’s third law says that if the gun exerts a force on the bullet the 
bullet must exert an equal and opposite force on the gun. This is the force that 
makes the gun recoil or ‘kick back’.

4. The water cannon
When water is sprayed at a wall from a hosepipe it hits the wall and stops. 
Newton’s first law says that if the velocity of the water changes, there must be an 
unbalanced force on the water. This force comes from the wall. Newton’s third 
law says that if the wall exerts a force on the water then the water will exert a force 
on the wall. This is the force that makes a water cannon so effective at dispersing 
demonstrators.

W

N

Figure 2.55 Forces acting on the Earth 
according to Newton’s third law.

A boat tests its water cannons.

32 Use Newton’s first and third laws to explain the following:

(a) When burning gas is forced downwards out of a rocket motor, the rocket accelerates up.

(b) When the water cannons on the boat in the photo are operating, the boat accelerates 
forwards.

(c) When you step forwards off a skateboard, the 
skateboard accelerates backwards.

(d) A table tennis ball is immersed in a fluid and 
held down by a string as shown in Figure 2.56. 
The container is placed on a balance. What will 
happen to the reading of the balance if the 
string breaks?

Exercise

water

string

balance

Figure 2.56
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Collisions
In this section we have been dealing with the interaction between two bodies 
(gun-bullet, skater-skateboard, hose-water). To develop our understanding of the 
interaction between bodies, let us consider a simple collision between two balls as 
illustrated in Figure 2.57.

Let us apply Newton’s three laws to this problem.

Newton’s first law
In the collision the red ball slows down and the blue ball speeds up. Newton’s first 
law tells us that that this means there is a force acting to the left on the red ball (F1) 
and to the right on the blue ball (F2).

Newton’s second law
This law tells us that the force will be equal to the rate of change of momentum of 
the balls so if the balls are touching each other for a time t

 F1  
m1v1  m1u1 ___________ 

t
  

 F2  
m2v2  m2u2 ___________ 

t
  

Newton’s third law
According to the third law, if the red ball exerts a force on the blue ball, then the 
blue ball will exert an equal and opposite force on the red ball.

 F1  F2 

   
m1v1  m1u1 ___________ 

t
    

m2v2  m2u2  ____________ 
t
  

Rearranging gives m1u1  m2u2  m1v1  m2v2

In other words the momentum at the start equals the momentum at the end.  
We find that this applies not only to this example but to all interactions.

v1 v2

u1

m1

u2

m2

Before

After

During
F2F1

Figure 2.57 Collision between two 
balls.

Isolated system
An isolated system is one in which 
no external forces are acting. When 
a ball hits a wall the momentum of 
the ball is not conserved because 
the ball and wall is not an isolated 
system, since the wall is attached 
to the ground. If the ball and 
wall were floating in space then 
momentum would be conserved.
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The law of the conservation of momentum
For a system of isolated bodies the total momentum is always the same.

This is not a new law since it is really just a combination of Newton’s laws. 
However it provides a useful short cut when solving problems.

Examples
In these examples we will have to pretend everything is in space isolated from the 
rest of the universe, otherwise they are not isolated and the law of conservation of 
momentum won’t apply. 

1. A collision where the bodies join together
If two balls of modelling clay collide with each other they stick together as shown 
in Figure 2.58. We want to find the velocity, v, of the combined lump after the 
collision.

If bodies are isolated then momentum is conserved so:

 momentum before  momentum after

 0.1  6  0.5  0.0  0.6  v

 v  0.6 ___ 0.6    1 m s 1

2. An explosion
A ball of clay floating around in space suddenly explodes into a big piece and a 
small piece, as shown in Figure 2.59. If the big bit has a velocity of 5 m s 1, what is 
the velocity of the small bit?

Since this is an isolated system, momentum is conserved so:

 momentum before  momentum after

 0  0.12  0.02  ( v)  0.1  5

 0.02  v  0.5

 v  25 m s 1

Simplified models
Pieces of clay floating in space are 
not exactly everyday examples, but 
most everyday examples (like balls 
on a pool table) are not isolated 
systems, so we can’t solve them in 
this simple way. 

6 m s 1

100 g

v

Before After

500 g

Figure 2.58 Two bodies stick together 
after colliding.

Figure 2.59 A piece of modelling clay 
suddenly explodes.

5 m s 1v

Before After

120 g 20 g 100 g
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What happens during the collision?
In the previous examples, we were more interested in the difference between the 
conditions before and after the collision than during it. However, collisions can 
be very different. For example, consider a ball of mass 200 g colliding with a hard 
floor and a trampoline as shown in Figure 2.61. Before the collisions each ball 
travels downwards at 10 m s 1 and each bounces up with velocity 10 m s 1. So the 
change in momentum (impulse) is the same for each:

0.2  ( 20)  0.2  20  8 N s

Each has the same change of momentum but each collision was very different 
– the collision with the trampoline took place over a longer time. If you replace 
the ball with yourself, you would certainly be able to feel the difference. We can 
represent these two collisions by plotting a graph of force against time as shown in 
Figure 2.62. We see the force exerted by the concrete is much greater.

Area under the graph
We notice that the area under the graph for each interaction is the same.

Area  1
 _ 2  base  height  1

 _ 2    0.02  8  1
 _ 2    0.2  0.8  8 N s

This is equal to the impulse.

Exercise

33 Draw diagrams to represent the following collisions then use the law of conservation of 
momentum to find the unknown velocity. Assume all collisions are head-on, in other words they 
take place in one dimension.

(a) Two identical isolated balls collide with each other. Before the collision, one ball was 
travelling at 10 m s 1 and the other was at rest. After the collision the first ball continues in 
the same direction with a velocity of 1 m s 1. Find the velocity of the other ball.

(b) Two identical balls are travelling towards each other; each is travelling at a speed of 5 m s 1. 
After they hit, one ball bounces off with a speed of 1 m s 1. What is the speed of the other?

(c) A spaceman of mass 100 kg is stranded 2 m from his spaceship as shown in Figure 2.60. He 
happens to be holding a hammer of mass 2 kg what must he do?

 If he only has enough air to survive for 2 minutes, how fast must he throw the hammer if he is to 
get back in time? Is it possible?

Figure 2.60 If you are ever in this 
position this course could save your life.

Figure 2.61 It’s less painful to land on 
a trampoline than a concrete block.

Figure 2.62

Time/s

Hard surface

Trampoline

0.02
0.2

Force/N

8

80

Exercise

34 (a)  Calculate the impulse of the body for the motion  
represented in Figure 2.63.

(b) If the mass of the object is 20 g, what is the change  
of velocity?

Time/s

Force/N

0.1 0.2 0.3 0.4 0.50

1
2
3
4
5

Figure 2.63
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 2.9 Work, energy and power

We have so far dealt with the motion of a small red ball and understand what 
causes it to accelerate. We have also investigated the interaction between a red 
ball and a blue one and have seen that the red one can cause the blue one to move 
when they collide. But what enables the red one to push the blue one? To answer 
this question we need to define some more quantities.

Work
In the introduction to this book it was stated that by developing models, our aim 
is to understand the physical world so that we can make predictions. At this point 
you should understand certain concepts related to the collision between two balls, 
but we still can’t predict the outcome. To illustrate this point let us again consider 
the red and blue balls. Figure 2.64 shows three possible outcomes of the collision.

If we apply the law of conservation of momentum, we realise that all three 
outcomes are possible. The original momentum is 10 newtonmetres (10 Nm) and 
the final momentum is 10 Nm in all three cases. But which one actually happens? 
This we cannot say (yet). All we know is that from experience the last option is not 
possible – but why?

When body A hits body B, body A exerts a force on body B. This force causes B to 
have an increase in velocity. The amount that the velocity increases depends upon 
how big the force is and over what distance the collision takes place. To make this 
simpler, consider a constant force acting on a body as in Figure 2.65.

Both blocks start at rest and are pulled by the same force, but the second block will 
gain more velocity because the force acts over a longer distance. To quantify this 

Assessment statements

2.3.1 Outline what is meant by work.
2.3.2 Determine the work done by a non-constant force by interpreting a 

force–displacement graph.
2.3.3 Solve problems involving the work done by a force.
2.3.4 Outline what is meant by kinetic energy.
2.3.5 Outline what is meant by change in gravitational potential energy. 
2.3.6 State the principle of conservation of energy.
2.3.7 List different forms of energy and describe examples of the 

transformation of energy from one form to another. 
2.3.8 Distinguish between elastic and inelastic collisions.
2.3.9 Define power.
2.3.10 Define and apply the concept of efficiency.
2.3.11 Solve problems involving momentum, work, energy and power.

10 m s 1

1 kg 1 kg

1 m s 1

a. 9 m s 1

5 m s 1

b. 5 m s 1

100 m s 1

c.
110 m s 1

Figure 2.64 The red ball hits the blue 
ball but what happens?

Figure 2.65 The force acts on the 
orange block for a greater distance.

F F

F F
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difference, we say that in the second case the force has done more work. Work is 
done when the point of application of a force moves in the direction of the force. 

Work is defined in the following way:

Work done  force  distance moved in the direction of the force.

The unit of work is the newtonmetre (Nm) which is the same as the joule (J).

Work is a scalar quantity.

Worked examples

1 A tractor pulls a felled tree along the ground for a distance of 200 m. If the 
tractor exerts a force of 5000 N, how much work will be done?

2 A force of 10 N is applied to a block, pulling it 50 m along the ground as shown 
in Figure 2.66. How much work is done by the force?

3 When a car brakes it slows down due to the friction force between the tyres and 
the road. This force opposes the motion as shown in Figure 2.67. If the friction 
force is a constant 500 N and the car comes to rest in 25 m, how much work is 
done by the friction force?

4 The woman in Figure 2.68 walks along with a 
constant velocity holding a suitcase.  
How much work is done by the force holding the 
case?

10 N

50 m

30°

10 NFigure 2.66

Sign of work

Since work is a scalar the sign 
has nothing to do with direction. 
Saying that you have done 
negative work on A is the same as 
saying A has done work on you.

Figure 2.67  Work done against 
friction.

25 m
500 N 500 N

Figure 2.68

v

F
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Solutions
1 Work done  force  distance moved in direction of force

 Work done  5000  200  1 MJ

2 In this example the force is not in the same direction as the movement. 
However, the horizontal component of the force is.

 Work done  10  cos 30°  50  433 N

3 This time the force is in the opposite direction to the motion.

 Work done  500  25  12 500 J

 The negative sign tells us that the friction isn’t doing the work but the work is 
being done against the friction.

4 In this example the force is acting perpendicular to the direction of motion, so 
there is no movement in the direction of the force.

Work done  zero

General formula
In general

Work  F cos   s

where  is the angle between the displacement, s, and force, F.

All the previous examples can be solved using this formula.

If   90°, cos  is positive so the work is positive.

  90°, cos   0 so the work is zero.

  90°, cos  is negative so the work is negative.

Working or not?
It may seem strange that when 
you carry a heavy bag you are not 
doing any work – that’s not what 
it feels like. In reality, lots of work is 
being done, since to hold the bag 
you use your muscles. Muscles are 
made of microscopic fibres, which 
are continuously contracting and 
relaxing, so are doing work.

 s

FF

35 Figure 2.69 shows a boy taking a dog for a walk.
(a) Calculate the work done by the force shown  

when the dog moves 10 m forward.
(b) Who is doing the work?

36 A bird weighing 200 g sits on a tree branch.  
How much work does the bird do on the tree?

37 As a box slides along the floor it is slowed down by a constant force due to friction. If this force is 
150 N and the box slides for 2 m, how much work is done against the frictional force?

Exercises

150 N

30°

Figure 2.69
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Work done by a varying force
In the examples so far, the forces have been constant. If the force isn’t constant, we 
can’t simply say work  force  distance unless we use the ‘average force’. In these 
cases, we can use a graphical method.

Let us first consider a constant force, F, acting over a distance s. The graph of 
force against distance for this motion is shown in Figure 2.70.

From the definition of work, we know that in this case work  F s

This is the same as the area under the graph. From this we deduce that:

work done  area under the force–distance graph

Example
Stretching a spring
Stretching a spring is a common example of a varying force. When you stretch a 
spring it gets more and more difficult the longer it gets. Within certain limits the 
force needed to stretch the spring is directly proportional to the extension of the 
spring. This was first recognised by Robert Hooke in 1676, so is named ‘Hooke’s 
Law’. Figure 2.71 shows what happens if we add different weights to a spring; the 
more weight we add the longer it gets. If we draw a graph of force against distance 
as we stretch a spring, it will look like the graph in Figure 2.72. The gradient of this 
line,   F ___ 

s
   is called the spring constant, k. 

The work done as the spring is stretched is found by calculating the area under the 
graph.

 area  1
 _ 2  base  height  1

 _ 2  F s

So  work done  1
 _ 2  F s

But if    F ___ 
s
    k then F  k s

Substituting for F gives 

 work done  1
 _ 2  k s²

distance

force

F

∆ s

Figure 2.70 Force vs distance for a 
constant force.

Figure 2.71 Stretching a spring.

Exercises

38 A spring of spring constant 2 N cm 1 and length 6 cm is stretched to a new length of 8 cm.

(a) How far has the spring been stretched?

(b) What force will be needed to hold the spring at this length?

(c) Sketch a graph of force against extension for this spring.

(d) Calculate the work done in stretching the spring.

(e) The spring is now stretched a further 2 cm.  
Draw a line on your graph to represent this  
and calculate how much additional work has  
been done.

39 Calculate the work done by the force represented  
by Figure 2.73. 

extension

force

∆ s

F

Figure 2.72 Force vs extension  
for a spring.

distance (m)

force

100

200

300

5 10

Figure 2.73 
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Energy
We have seen that it is sometimes possible for body A to do work on body B but 
what does A have that enables it to do work on B? To answer this question we must 
define a new quantity, energy. 

Energy is the quantity that enables body A to do work on body B.

If body A collides with body B as shown in Figure 2.74, body A has done work on 
body B. This means that body B can now do work on body C. Energy has been 
transferred from A to B.

When body A does work on body B, energy is transferred from body A to body B.

The unit of energy is the joule (J).

Energy is a scalar quantity.

Different types of energy
If a body can do work then it has energy. There are two 
ways that a simple body such as a red ball can do work. 
In the example above, body A could do work because 
it was moving – this is called kinetic energy. Figure 2.75 
shows an example where A can do work even though it 
isn’t moving. In this example, body A is able to do work 
on body B because of its position above the Earth. If 
the hand is removed, body A will be pulled downwards 
by the force of gravity, and the string attached to it will 
then drag B along the table. If a body is able to do work 
because of its position, we say it has potential energy.

Kinetic energy (KE)
This is the energy a body has due to its movement. To give a body KE, work must 
be done on the body. The amount of work done will be equal to the increase in 
KE. If a constant force acts on a red ball of mass m as shown in Figure 2.76, then 
the work done is Fs. 

From Newton’s second law we know that F  ma which we can substitute in  
work  Fs to give work  mas

We also know that since acceleration is constant we can use the suvat equation 
v2  u2  2as which since u  0 simplifies to v2  2as.

Rearranging this gives as  v
2
 __ 2   so work  1

 _ 2  mv2

This work has increased the KE of the body so we can deduce that:

KE  1
 _ 2  mv2

A

before A hits B

after A hits B

B C

A B C

v

v

Figure 2.74 The red ball gives energy 
to the blue ball.

Figure 2.76

Figure 2.75B

A

Use of words
If we say a body has potential 
energy it sounds as though it has 
the potential to do work. This is 
true, but a body that is moving has 
the potential to do work too. This 
can lead to misunderstanding. It 
would have been better to call it 
positional energy.

time  0 time  t

va

s

F F
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Gravitational potential energy (PE)
This is the energy a body has due to its position above the Earth. 

For a body to have PE it must have at some time been lifted to that position.  
The amount of work done in lifting it equals the PE. Taking the example shown  
in Figure 2.75, the work done in lifting the mass, m, to a height h is mgh (this  
assumes that the body is moving at a constant velocity so the lifting force and 
weight are balanced).

If work is done on the body then energy is transferred so:

gain in PE  mgh

The law of conservation of energy
We could not have derived the equations for KE or PE without assuming that the 
work done is the same as the gain in energy. The law of conservation of energy is a 
formal statement of this fact.

Energy can neither be created nor destroyed – it can only be changed from one 
form to another.

This law is one of the most important laws that we use in physics. If it were not 
true you could suddenly find yourself at the top of the stairs without having done 
any work in climbing them, or a car suddenly has a speed of 200 km h 1 without 
anyone touching the accelerator pedal. These things just don’t happen, so the laws 
we use to describe the physical world should reflect that. 

Worked examples

1 A ball of mass 200 g is thrown vertically upwards  
with a velocity of 2 m s 1 as shown in Figure 2.77.  
Use the law of conservation of energy to  
calculate its maximum height. 

2 A block slides down the frictionless ramp  
shown in Figure 2.78. Use the law of  
conservation of energy to find its speed  
when it gets to the bottom. 

Solutions
1 At the start of its motion the body has KE. This enables the body to do work 

against gravity as the ball travels upwards. When the ball reaches the top, all the 
KE has been converted into PE. So applying the law of conservation of energy:

 loss of KE  gain in PE

   1 _ 2  mv2  mgh

so h  v
2
 __ 2g    22

 ______ 2  10    0.2 m

This is exactly the same answer you would get by calculating the acceleration 
from F  ma and using the suvat equations.

Other types of PE
In this section we only deal with 
examples of PE due to a body’s 
position close to the Earth. 
However there are other positions 
that will enable a body to do work 
(for example, in an electric field). 
These will be introduced after 
the concept of fields has been 
introduced in Chapter 6.

2 m s 1KE

PE

h

Figure 2.77 Work is done lifting the 
ball so it gains PE.

Figure 2.78 As the block slides down 
the slope it gains KE.

v
5 m
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2 This time the body loses PE and gains KE so applying the law of conservation 
of energy:

 loss of PE  gain of KE

 mgh  1
 _ 2  mv2

So v  √
___

 2gh    √
___________

 (2  10  5)    10 m s 1

Again, this is a much simpler way of getting the answer than using components 
of the forces.

Forms of energy
When we are describing the motion of simple red balls there are only two forms of 
energy, KE and PE. However, when we start to look at more complicated systems, 
we discover that we can do work using a variety of different machines, such as 
petrol engine, electric engine etc. To do work, these machines must be given 
energy and this can come in many forms, for example:

 Petrol  Solar

 Gas  Nuclear

 Electricity

As you learn more about the nature of matter in Chapter 3, you will discover that 
all of these (except solar) are related to either KE or PE of particles. 

Use the law of conservation of energy to solve the following:

40 A stone of mass 500 g is thrown off the top of a cliff with a speed of 5 m s 1. If the cliff is 50 m 
high, what is its speed just before it hits the ground?

41 A ball of mass 250 g is dropped 5 m onto a spring 
as shown in Figure 2.79.
(a) How much KE will the ball have when it hits 

the spring?
(b) How much work will be done as the spring is 

compressed?
(c) If the spring constant is 250 kN m 1, calculate 

how far the spring will be compressed.

42 A ball of mass 100 g is hit vertically upwards with a bat. The bat exerts a constant force of 15 N on 
the ball and is in contact with it for a distance of 5 cm.
(a) How much work does the bat do on the ball?
(b) How high will the ball go?

43 A child pushes a toy car of mass 200 g up a slope. The car has a speed of 2 m s 1 at the bottom of 
the slope.
(a) How high up the slope will the car go?
(b) If the speed of the car were doubled how high would it go now?

Exercises

h

5 m

Figure 2.79 In this example the 
spring is compressed, not stretched, 
but Hooke’s law still applies.
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Energy and collisions
One of the reasons that we brought up the concept of energy was related to the 
collision between two balls as shown in Figure 2.80. We now know that if no 
energy is lost when the balls collide, then the KE before the collision  KE after. 
This enables us to calculate the velocity afterwards and the only solution in this 
example is quite a simple one. The red ball gives all its KE to the blue one, so the 
red one stops and the blue one continues, with velocity  10 m s 1. If the balls 
become squashed, then some work needs to be done to squash them. In this case 
not all the KE is transferred, and we can only calculate the outcome if we know 
how much energy is used in squashing the balls.

Elastic collisions
An elastic collision is a collision in which both momentum and KE are conserved. 

Example
Two balls of equal mass collide with each other elastically with the velocities 
shown in Figure 2.81. What is the velocity of the balls after the collision?

Conservation of momentum: Conservation of KE:

  1 _ 2  m 102    1 _ 2  m 52 
1 _ 
2
  mv1

2    1 _ 2  mv2
2

102  52 v1
2  v2

2

Momentum before  momentum after

m  10  m  5  mv1  mv2

10  5  v1  v2

There are only two possible solutions to these two equations; either the velocities 
don’t change, which means there isn’t a collision, or the velocities swap, so  
v1  5 m s 1 and v2  10 m s 1.

Inelastic collisions
There are many outcomes of an inelastic collision but here we will only consider 
the case when the two bodies stick together. We call this totally inelastic collision. 

Example
When considering the conservation of momentum in collisions, we used the 
example shown in Figure 2.82. How much work was done to squash the balls in 
this example?

According to the law of conservation of energy, the work done squashing the balls 
is equal to the loss in KE. 

KE loss  KE before  KE after  1
 _ 2    0.1  62    1 _ 2    0.6  12

KE loss  1.8  0.3  1.5 J

So work done  1.5 J

10 m s 1

1 kg 1 kg

10 m s 1

Figure 2.80

 Examiner’s hint: If the masses are 
the same in an elastic collision the 
velocities of the two bodies swap

Figure 2.81

10 m s 1

mBefore

After

5 m s 1

v1 v2

m

6 m s 1

100 g

1 m s 1

Before After

500 g

Figure 2.82
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Explosions
Explosions can never be elastic since, without doing work and therefore increasing 
the KE, the parts that fly off after the explosion would not have any KE and would 
therefore not be moving. The energy to initiate an explosion often comes from the 
chemical energy contained in the explosive.

Example
Again consider a previous example where a ball exploded (shown again in 
Figure 2.83). How much energy was supplied to the balls by the explosive?

According to the law of conservation of energy, the energy from the explosive 
equals the gain in KE of the balls.

KE gain  KE after  KE before

KE gain  (  1 _ 2    0.02  252    1 _ 2    0.1  52)  0  6.25  1.25  7.5 J

Power
We know that to do work requires energy, but work can be done quickly or it 
can be done slowly. This does not alter the energy exchanged but the situations 
are certainly different. For example we know that to lift one thousand, 1 kg bags 
of sugar from the floor to the table is not an impossible task – we can simply 
lift them one by one. It will take a long time but we would manage it in the end. 
However, if we were asked to do the same task in 5 seconds, we would either have 

Sharing of energy
The result of this example is very 
important; we will use it when 
dealing with nuclear decay later 
on. So remember, when a body 
explodes into two unequal bits, the 
small bit gets most energy.

5 m s 125 m s 1

Before After

120 g 20 g 100 g

Figure 2.83

44 Two balls are held together by a spring as shown in  
Figure 2.84. The spring has a spring constant of 10 N cm 1  
and has been compressed a distance 5 cm.

(a) How much work was done to compress the spring?

(b) How much KE will each gain?

(c) If each ball has a mass of 10 g calculate the velocity  
of each ball.

45 Two pieces of modelling clay as shown in Figure 2.85  
collide and stick together.

(a) Calculate the velocity of the lump after the collision.

(b) How much KE is lost during the collision?

46 A red ball travelling at 10 m s 1 to the right collides  
with a blue ball with the same mass travelling  
at 15 m s 1 to the left. If the collision is elastic, what are  
the velocities of the balls after the collision?

Exercise

Figure 2.84

10 m s 1 15 m s 1

2 kg 10 kg

Figure 2.85

Notice how the small bit gets most 
of the energy. We will come back to 
this when studying nuclear decay.
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to lift all 1000 kg at the same time or move each bag in 0.005 s, both of which are 
impossible. Power is the quantity that distinguishes between these two tasks.

Power is defined as:

Power   work done per unit time.

Unit of power is the J/s which is the same as the watt (W).

Power is a scalar quantity.

Examples
1. The powerful car
We often use the term power to describe cars. A powerful car is one that can 
accelerate from 0 to 100 km h 1 in a very short time. When a car accelerates, 
energy is being converted from the chemical energy in the fuel to KE. To have a big 
acceleration the car must gain KE in a short time, hence be powerful.

2. Power lifter
A power lifter is someone who can lift heavy weights, so shouldn’t we say they are 
strong people rather than powerful? A power lifter certainly is a strong person (if 
they are good at it) but they are also powerful. This is because they can lift a big 
weight in a short time.

Worked example

A car of mass 1000 kg accelerates from rest to 100 km h 1 in 5 seconds. What is the 
average power of the car?

Solution
100 km h 1  28 m s 1.

The gain in KE of the car  1
 _ 2  mv2  1

 _ 2    1000  282  392 kJ

If the car does this in 5 s then

power  work done _________ 
time

    392 ___ 5    78.4 kW

Efficiency
When a box is pulled along the floor, the person pulling has to do work. This work 
is converted into the KE of the box and some of it is done against friction. Since 
the result they are trying to achieve is to move the box, the energy transferred to 
KE could be termed ‘useful energy’ and the rest is ‘wasted’. (The waste energy in 
this example turns into heat, but we will deal with that in the next chapter). The 
efficiency tells us how good a system is at turning the input energy into useful work.

Power and velocity

If power    work done _________ time   then we can 

also write P    F s ____ t   so P  F ("  s ___ t   )  

which is the same as P  Fv where 
v is the velocity.

Horse power
Horse power is often used as the 
unit for power when talking about 
cars and boats.

746 W  1 hp

So in Example 1, the power of the 
car is 105 hp.

Exercises

47 A weightlifter lifts 200 kg 2 m above the ground in 5 s. Calculate the power of the weightlifter in 
watts.

48 In 25 s a trolley of mass 50 kg runs down a hill. If the difference in height between the top and 
the bottom of the hill is 50 m, how much power will have been dissipated?

49 A car moves along a road at a constant velocity of 20 m s 1. If the resistance force acting against 
the car is 1000 N, what is the power developed by the engine?

Efficiency and power
Since the work is going in and out 
at the same rate, efficiency can also 
be expressed as

  
power out

 _________ power in  
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Efficiency is defined as:

  useful work out  _____________  
energy put in

  

Efficiency has no units.

Efficiency is a scalar quantity.

It is worth noting here that due to the law of conservation of energy, the efficiency 
can never be greater than 1.

Worked example

A box of mass 10 kg is pulled along the floor for 2 m by a horizontal force of 50 N. 
If the frictional force is 20 N, what is the efficiency of the system?

Solution

The work done by the pulling force  force  distance  50  2  100 J

The unbalanced force on the box  50  20  30 N

So the work done on the box  30  2  60 J

This work is exchanged to the box and increases its KE.

Work done against friction  20  2  40 J

So work in  100 J and total work out  60  40  100 J

Efficiency  useful work out  _____________ 
work in

    60 ___ 100    0.6

Expressed as a percentage, this is 60%.

 2.10 Uniform circular motion

50 N

20 N

50 A motor is used to lift a 10 kg mass 2 m above the ground in 4 s. If the power input to the motor 
is 100 W, what is the efficiency of the motor?

51 A motor is 70% efficient. If 60 kJ of energy is put into the engine, how much work is got out?

52 The drag force that resists the motion of a car travelling at 80 km h 1 is 300 N. 
(a) What power is required to keep the car travelling at that speed?
(b) If the efficiency of the engine is 60%, what is the power of the engine?

Exercise

Assessment statements

2.4.1 Draw a vector diagram to illustrate that the acceleration of a particle 
moving with constant speed in a circle is directed towards the centre 
of the circle.

2.4.2 Apply the expression for centripetal acceleration.
2.4.3 Identify the force producing circular motion in various situations.
2.4.4 Solve problems involving circular motion.
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If a car travels around a bend at 30 km h 1, it is obviously travelling at a constant 
speed, since the speedometer would register 30 km/hr all the way round. However 
it is not travelling at constant velocity. This is because velocity is a vector quantity 
and for a vector quantity to be constant, both magnitude and direction must 
remain the same. Bends in a road can be many different shapes, but to simplify 
things, we will only consider circular bends.

Centripetal acceleration
From the definition of 
acceleration, we know that if 
the velocity of a body changes, 
it must be accelerating, 
and that the direction of 
acceleration is in the direction 
of the change in velocity. Let 
us consider a body moving 
in a circle with a constant 
speed v. Figure 2.86 shows two 
positions of the body separated 
by a short time. 

Since this is a two-dimensional problem, we will need to draw the vectors to find 
out the change in velocity. This has been done on the diagram. It can be seen 
that the vector representing the change in velocity points to the centre of the 
circle. This means that the acceleration is also directed towards the centre, and 
this acceleration is called centripetal acceleration. All bodies moving in a circle 
accelerate towards the centre.

Centripetal force
From Newton’s first law, we know that if a body accelerates, there must be an 
unbalanced force acting on it. The second law tells us that that force is in the 
direction of the acceleration. This implies that there must be a force acting towards 
the centre. This force is called the centripetal force.

Centripetal force, F  mv2
 ____ r    m 2r

Examples
All bodies moving in a circle must be acted upon by a force towards the centre of 
the circle. However, this can be provided by many different forces.

1. Ball on a string
You can make a ball move in a circle by attaching it to a string and swinging it 
round your head. In this case the centripetal force is provided by the tension in 
the string. If the string suddenly broke, the ball would fly off in a straight line at a 
tangent to the circle.

Circular motion quantities
When describing motion in a circle 
we often use quantities referring 
to the angular rather than linear 
quantities.

Time period (T)
The time taken for one complete 
circle.

Angular displacement ( )
The angle swept out by a line 
joining the body to the centre.

Angular velocity ( )
The angle swept out per unit time.

   ("  2___ T   ) 

Frequency (f )
The number of complete circles 

per unit time  ("f    1 __ T   ) .

Size of centripetal acceleration

The centripetal acceleration is 
given by the following formula

a  v
2
 __ r  

Or in circular terms

a  2r

v

v

r

Figure 2.86 A body travels at constant 
speed around a circle of radius r.

Figure 2.87 Showing the direction of 
the force and acceleration.

v

a

F
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2. Car going round a bend
When a car goes round a bend, the force causing it to move in a circle is the 
friction between the road and the tyres. Without this friction the car would move 
in a straight line.

3. Wall of Death
In the Wall of Death the rider travels around  
the inside walls of a cylinder. Here the  
centripetal force is provided by the normal  
force between the wall and the tyres.

Centripetal is not an extra force
Remember when solving circular 
motion problems, centripetal force 
is not an extra force – it is one of 
the existing forces. Your task is to 
find which force (or a component 
of it) points towards the centre.

53 Calculate the centripetal force for a 1000 kg car travelling around a circular track of radius 50 m at 
30 km h 1.

54 A 200 g ball is made to travel in a circle of radius 1 m on the end of a string. If the maximum force 
that the string can withstand before breaking is 50 N, what is the maximum speed of the ball?

55 A body of mass 250 g moves in a circle of radius 50 cm with a speed of 2 m s 1. Calculate
(a) the distance travelled per revolution
(b) the time taken for one revolution
(c) the angle swept out per revolution
(d) the angular velocity
(e) the centripetal acceleration
(f) the centripetal force.

Exercise

1 This question is about linear motion.
 A police car P is stationary by the side of a road. A car S, exceeding the speed limit, 

passes the police car P at a constant speed of 18 m s 1. The police car P sets off to catch 
car S just as car S passes the police car P. Car P accelerates at 4.5 m s 2 for a time of  
6.0 s and then continues at constant speed. Car P takes a time t seconds to draw level 
with car S.
(a)  (i) State an expression, in terms of t, for the distance car S travels in t seconds. (1)
 (ii) Calculate the distance travelled by the police car P during the first 6.0 seconds 

of its motion. (1)
 (iii) Calculate the speed of the police car P after it has completed its acceleration. (1)
 (iv) State an expression, in terms of t, for the distance travelled by the police car P 

during the time that it is travelling at constant speed. (1)
(b) Using your answers to (a), determine the total time t taken for the police car P to 

draw level with car S. (2)
(Total 6 marks)

© International Baccalaureate Organisation

Practice questions

Wall of Death
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2 This question is about the kinematics of an elevator (lift).
(a) Explain the difference between the gravitational mass and the inertial mass of  

an object. (3)
 An elevator (lift) starts from rest on the ground floor and comes to rest at a higher floor. 

Its motion is controlled by an electric motor. A simplified graph of the variation of the 
elevator’s velocity with time is shown below.

(b) The mass of the elevator is 250 kg. Use this information to calculate
 (i) the acceleration of the elevator during the first 0.50 s. (2)
 (ii) the total distance travelled by the elevator. (2)
 (iii) the minimum work required to raise the elevator to the higher floor. (2)
 (iv) the minimum average power required to raise the elevator to the higher floor. (2)
 (v) the efficiency of the electric motor that lifts the elevator, given that  

the input power to the motor is 5.0 kW. (2)

(c) On the graph axes below, sketch a realistic variation of velocity for the elevator. 
Explain your reasoning. (The simplified version is shown as a dotted line)

 (2)

4.0 8.0
time (s)

velocity
( ms 1)

12.03.0 7.0 11.02.0 6.0 10.01.00.0 5.0 9.0
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

4.0 8.0
time (s)

velocity
( ms 1)

12.03.0 7.0 11.02.0 6.0 10.01.00.0 5.0 9.0
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80
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 The elevator is supported by a cable. The diagram opposite is a free-body force  
diagram for when the elevator is moving upwards during the first 0.50 s.

(d) In the space below, draw free-body force diagrams for the elevator during the 
following time intervals.

 (i) 0.5 to 11.50 s (ii) 11.50 to 12.00 s

(3)

 A person is standing on weighing scales in the elevator. Before the elevator rises, the 
reading on the scales is W.
(e) On the axes below, sketch a graph to show how the reading on the scales varies 

during the whole 12.00 s upward journey of the elevator. (Note that this is a sketch 
graph – you do not need to add any values.)

(3)
(f) The elevator now returns to the ground floor where it comes to rest. Describe and 

explain the energy changes that take place during the whole up and down journey.
(4)

(Total 25 marks)
© International Baccalaureate Organisation

tension

weight

4.0 8.0
time (s)

Reading on
scales

12.03.0 7.0 11.02.0 6.0 10.01.00.0 5.0 9.0
0.00

W
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3 This question is about throwing a stone from a cliff.
 Antonia stands at the edge of a vertical cliff and throws a stone vertically upwards.

 The stone leaves Antonia’s hand with a speed v  8.0 m s 1.
 The acceleration of free fall g is 10 m s 2 and all distance measurements are taken from 

the point where the stone leaves Antonia’s hand.
(a) Ignoring air resistance calculate
 (i) the maximum height reached by the stone. (2)
 (ii) the time taken by the stone to reach its maximum height. (1)

 The time between the stone leaving Antonia’s hand and hitting the sea is 3.0 s.
(b) Determine the height of the cliff. (3)

(Total 6 marks)
© International Baccalaureate Organisation

4 This question is about conservation of momentum and conservation of energy.
(a) State Newton’s third law. (1)
(b) State the law of conservation of momentum. (2)

 The diagram below shows two identical balls A and B on a horizontal surface. Ball B is 
at rest and ball A is moving with speed v along a line joining the centres of the balls. The 
mass of each ball is M.

 During the collision of the balls, the magnitude of the force that ball A exerts on ball B is 
FAB and the magnitude of the force that ball B exerts on ball A is FBA.

(c) On the diagram below, add labelled arrows to represent the magnitude and 
direction of the forces FAB and FBA.

(3)

v  8.0 m s 1

sea

ABefore collision

v

B

ADuring the collision B
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 The balls are in contact for a time t. After the collision, the speed of ball A is +vA and the 
speed of ball B is +vB in the directions shown.

 As a result of the collision, there is a change in momentum of ball A and of ball B.
(d) Use Newton’s second law of motion to deduce an expression relating the forces 

acting during the collision to the change in momentum of
 (i) ball B. (2)
 (ii) ball A. (2)
(e) Apply Newton’s third law and your answers to (d) to deduce that the change in 

momentum of the system (ball A and ball B) as a result of this collision, is zero. (4)
(f) Deduce that if kinetic energy is conserved in the collision, then after the collision, 

ball A will come to rest and ball B will move with speed v. (3)
(Total 17 marks)

© International Baccalaureate Organisation

5 This question is about the kinematics and dynamics of circular motion.
(a) A car goes round a curve in a road at constant speed. Explain why, although its 

speed is constant, it is accelerating. (2)

 In the diagram below, a marble (small glass sphere) rolls down a track, the bottom part 
of which has been bent into a loop. The end A of the track, from which the marble is 
released, is at a height of 0.80 m above the ground. Point B is the lowest point and 
point C the highest point of the loop. The diameter of the loop is 0.35 m.

 The mass of the marble is 0.050 kg. Friction forces and any gain in kinetic energy due to 
the rotating of the marble can be ignored. The acceleration due to gravity, g = 10 m s 2.

 Consider the marble when it is at point C.
(b) (i) On the diagram, draw an arrow to show the direction of the resultant force 

acting on the marble. (1)
 (ii) State the names of the two forces acting on the marble. (2)
 (iii) Deduce that the speed of the marble is 3.0 m s 1. (3)

AAfter the collision

vA

B

vB

0.35 m

0.80 m

ground

A

marble

B

C
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 (iv) Determine the resultant force acting on the marble and hence determine the 
reaction force of the track on the marble. (4)

 (Total 12 marks)
© International Baccalaureate Organisation

6 This question is about the collision between two railway trucks (carts).
(a) Define linear momentum. (1)

 In the diagram below, railway truck A is moving along a horizontal track. It collides 
with a stationary truck B and on collision, the two join together. Immediately before the 
collision, truck A is moving with speed 5.0 m s 1. Immediately after collision, the speed 
of the trucks is v.

 The mass of truck A is 800 kg and the mass of truck B is 1200 kg.
(b)  (i) Calculate the speed v immediately after the collision. (3)
 (ii) Calculate the total kinetic energy lost during the collision. (2)
(c) Suggest what has happened to the lost kinetic energy. (2)

(Total 8 marks)
© International Baccalaureate Organisation

7 This question is about estimating the energy changes for an escalator (moving staircase).
 The diagram below represents an escalator. People step on to it at point A and step off 

at point B.

Immediately before collision

5.0 m s 1

A
B

Immediately after collision

v

A
B

Immediately before collision

5.0 m s 1

A
B

Immediately after collision

v

A
B

40°

30 m

A

B

M02_IBPH_SB_HIGGLB_4426_U02.indd   64 29/6/10   11:50:51



65

(a) The escalator is 30 m long and makes an angle of 40° with the horizontal. At full 
capacity, 48 people step on at point A and step off at point B every minute.

 (i) Calculate the potential energy gained by a person of weight 700 N in moving 
from A to B. (2)

 (ii) Estimate the energy supplied by the escalator motor to the people every 
minute when the escalator is working at full capacity. (1)

 (iii) State one assumption that you have made to obtain your answer to (ii). (1)

 The escalator is driven by an electric motor that has an efficiency of 70 %.
(b)  (i)  Using your answer to (a)(ii), calculate the minimum input power required by 

the motor to drive the escalator. (3)
 (ii) Explain why it is not necessary to take into account the weight of the 

escalator when calculating the input power. (1)
(c) Explain why in practice, the power of the motor will need to be greater than that 

calculated in (b)(i). (1)
(Total 9 marks)
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