Question #1

If you throw a ball straight upward at a height of 1.5 m, it will rise into the air and then fall back down toward the ground. Imagine that you throw the ball with an initial velocity of 13.7 m/s.

- a. How long does it take the ball to reach the top of its motion?
- b. How far will the ball rise before it begins to fall?
- c. At what speed will the ball hit the ground?

$$V_{i} = 13.7 \frac{m}{s} \qquad t = s$$

$$\overline{a} = -9.8 \frac{m}{sz} \qquad V_{f} = V_{i} + \overline{a}t + 1$$

$$J_{i} = 1.5 m \qquad (0 \frac{m}{s}) = (13.7 \frac{m}{s}) + (-9.8 \frac{m}{sz}) + (-9.8 \frac$$

Question #1

If you throw a ball straight upward at a height of 1.5 m, it will rise into the air and then fall back down toward the ground. Imagine that you throw the ball with an initial velocity of 13.7 m/s.

- a. How long does it take the ball to reach the top of its motion?
- b. How far will the ball rise before it begins to fall?
- c. At what speed will the ball hit the ground?

$$V_{i} = 13.7 \frac{m}{s}$$

$$V_{f} = 0 \frac{m}{s}$$

$$(at the top of its motion)$$

$$V_{f}^{2} = V_{i}^{2} + 2a \Delta d$$

$$V_{f} = 0 \frac{d}{s}$$

$$V_{f} = 0 \frac{d}{s}$$

$$(at the top of its motion)$$

$$V_{f}^{2} = V_{i}^{2} + 2a \Delta d$$

$$V_{f} = 0 \frac{d}{s} + V_{i}t + \frac{1}{2}at^{2}$$

$$V_{f} = 0 \frac{d}{s}$$

$$V_{f} = 0 \frac{$$

Question #1

If you throw a ball straight upward at a height of 1.5 m, it will rise into the air and then fall back down toward the ground. Imagine that you throw the ball with an initial velocity of 13.7 m/s.

- a. How long does it take the ball to reach the top of its motion?
- b. How far will the ball rise before it begins to fall?
- c. At what speed will the ball hit the ground?

what speed will the ball hit the ground?

$$V_{i} = 13.7 \frac{m}{S} \qquad \overline{A} = -9.8 \frac{m}{S^{2}} \qquad V_{f} = -\frac{m}{S}$$

$$V_{i} = 1.5 m \qquad V_{i} = 0 \frac{m}{S} \qquad V_{f} = V_{i}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = 0 m \qquad V_{f} = V_{i}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = 0 m \qquad V_{f} = V_{i}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{i}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{i}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{i}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{i}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{i}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{i}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{i}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{i}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{i}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{i}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{i}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{i}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{i}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{i}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{i}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{i}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{i}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{f}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{f}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{f}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{f}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{f}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{f}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{f}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{f}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{f}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{f}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{f}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_{f} = 0 \frac{m}{S} \qquad V_{f} = V_{f}^{2} + 2 \overline{a} \Delta d \qquad Ipt$$

$$V_$$

Question #2

A hot air balloon is rising at a constant speed of 1.00 m/s. The pilot accidentally drops his pen 10.0 s into the flight.

- a. How far does the pen drop?
- b. How fast is the pen traveling when it hits the ground, ignoring air resistance?

(a)
$$d_i = 0m$$
 $d_f = (0m) + (1.00\frac{m}{5})(10.0s)$ $d_f = 10.0m$ (a) $d_f = 10.0m$ (b) $d_i = 10.0m$ $d_f = 10.0m$