EXAMPLE Problem 1

Work and Energy A 105-g hockey puck is sliding across the ice. A player exerts a constant 4.50-N force over a distance of 0.150 m. How much work does the player do on the puck? What is the change in the puck's energy?

Analyze and Sketch the Problem

- Sketch the situation showing initial conditions.
- Establish a coordinate system with +x to the right.
- Draw a vector diagram.

Known:
$$M = 105 \text{ g}$$
 Ky W = ?
 $M = 105 \text{ g}$ Ky $M = 9$
 $M = 105 \text{ g}$ Ky $M = 9$
 $M = 105 \text{ g}$ W = ?
 $M = 105 \text{ g}$ W = ?

- Refer to Example Problem 1 to solve the following problem.
 - **a.** If the hockey player exerted twice as much force, 9.00 N, on the puck, how would the puck's change in kinetic energy be affected?
 - b. If the player exerted a 9.00-N force, but the stick was in contact with the puck for only half the distance, 0.075 m, what would be the change in kinetic energy?

(1) a)
$$F = 9.00 \text{ N}$$

 $m = .105 \text{ Kg}$
 $\Delta d = .150 \text{ m}$
 $\Delta KE = ... T$
 $\Delta KE = W = F \Delta d$
 $= (9.00)(.150)$
 $\Delta KE = 1.35 \text{ J}$

b)
$$F = 9.00N$$
 $\Delta d = .075m$

$$\Delta KE = W = F\Delta d$$

$$= (9.00)(.075)$$

$$= .675 J$$

$$\Delta KE \uparrow f \uparrow \text{direct}$$

$$\Delta KE \uparrow \Delta d \uparrow \text{Prop.}$$

- 2. Together, two students exert a force of 825 N in pushing a car a distance of 35 m.
 - a. How much work do the students do on the car?
 - b. If the force was doubled, how much work would they do pushing the car the same distance?

(a)
$$\hat{w} = F_{\Delta} d$$

$$= (825)(35)$$

$$= 29875 J$$

$$2.9 \times 10^4 J \text{ or } 29000 J$$
(b) $w = (1656)(35)$

$$= 57750 J$$

$$= 5.8 \times 10^4 J \text{ or } 58000 J$$

- A rock climber wears a 7.5-kg backpack while scaling a cliff. After 30.0 min, the climber is 8.2 m above the starting point.
 - a. How much work does the climber do on the backpack?
 - b. If the climber weighs 645 N, how much work does she do lifting herself and the backpack?
 - c. What is the change in the climber's energy?

(a)
$$W = FAd = mgh = (7.5)(9.8)(8.2) = 602.7J$$

 $= (6.0 \times 10^2 J)$
(b) $W_{net} = (8) + (8) + (8) = (645N)(8.2m)$
 $W_{c} = F_{c} \Delta d = (645N)(8.2m)$
 $W_{c} = 5289 J$
(c) $= 5891.7 J = 5.9 \times 10^3 J$
Same as part (b).

9. A box that weighs 575 N is lifted a distance of 20.0 m straight up by a cable attached to a motor. The job is done in 10.0 s. What power is developed by the motor in W and kW?

$$P = \frac{W}{t}$$

$$P = \frac{F \Delta d}{t} = \frac{(575)(20.0)}{(10.0)}$$

$$P = 1150 \text{ W}$$

$$P = 1.15 \text{ KW}$$

- 10. You push a wheelbarrow a distance of 60.0 m at a constant speed for 25.0 s, by exerting a 145-N force horizontally.
 - a. What power do you develop?
 - b. If you move the wheelbarrow twice as fast, how much power is developed?

$$Ad = 60.0 \text{m}$$
 $t = 25.0 \text{s}$
 $F = 145 \text{N}$

(a) $P = W$

P = $F = 348 \text{W}$

(b) P1, V1

P = $F = 74 \text{m}$

P = $F = 74 \text$

11. What power does a pump develop to lift 35 L of water per minute from a depth of 110 m? (1 L of water has a mass of 1.00 kg.)

$$m = 35 \text{ kg } (b/c 35L | 1.00 \text{ kg})$$

 $t = 1 \text{ min } | 60s = 60s$
 $Ad = 110 \text{ m}$
 $P = FAd = (343)(110)$
 $P = W$
 $P = 628.83$
 $F = mg = (35)(9.8) = 343 \text{ N}$
 $P = 630 \text{ W}$

12. An electric motor develops 65 kW of power as it lifts a loaded elevator 17.5 m in 35 s. How much force does the motor exert?

:.
$$F = Pt$$
 = $(65000)(35)$

13. A winch designed to be mounted on a truck, as shown in Figure 10-7, is advertised as being able to exert a 6.8×10³-N force and to develop a power of 0.30 kW. How long would it take the truck and the winch to pull an object 15 m?

F=6.8×10³ N
P=0.30 KW = 300 W
Ad = 15m

$$t = F\Delta d$$

P
$$t = F\Delta d$$

$$t = F\Delta d$$

$$t = F\Delta d$$

$$t = Ad = (6800)(15)$$

$$(300)$$

Page 12