SLO Assessment Review Guide

Zamir Steed Honors Physics 3A

One dimensional motion

Distance

- How far an object is from the origin
- Measured in meters
- Scalar quantity

Displacement

- Change in position
- Measured in meters
- Vector quantity

Formula
$\Delta \mathbf{d}=\mathbf{d}_{\mathbf{f}}-\mathbf{d}_{\mathbf{i}} \leftarrow$ final position minus the initial position.

Example

$\mathrm{d}_{\mathrm{f}}=25.0 \mathrm{~m}$
$\mathrm{d}_{\mathrm{i}}=5.0 \mathrm{~m}$
$\Delta d=20.0 \mathrm{~m}$

One dimensional motion

Speed

- How fast an object is moving
- Scalar quantity
- Units=m/s

Formula
$v=d / \dagger$
D=distance
T=time

Example

$D=10 \mathrm{~m}$
$\mathrm{T}=5 \mathrm{~s}$
$\mathrm{V}=2 \mathrm{~m} / \mathrm{s}$

Velocity

- Rate at which an object changes its position
- Vector quantity
- Units= m/s

Formula
$\mathrm{V}=\mathrm{d} / \mathrm{t}$
$V=$ velocity
D=displacement
T=time

Example

$D=90 \mathrm{~m}$
$\mathrm{T}=10 \mathrm{~s}$
$\mathrm{V}=9 \mathrm{~m} / \mathrm{s}$

One dimensional motion

Acceleration

- Rate at which an object changes its velocity
- Vector quantity
- Units=m/s ${ }^{2}$

Formula
$A=v / \dagger$
a=acceleration
$\mathrm{V}=$ velocity
T=time

Example

$\mathrm{v}=50 \mathrm{~m} / \mathrm{s}$
$t=5 \mathrm{~s}$
$\mathrm{a}=10 \mathrm{~m} / \mathrm{s}^{2}$

One dimensional motion

Vector

- Quantities that have both size and direction
- Units differ depending on the quantity

Example

Acceleration
Velocity
Displacement

Scalar

- Quantities that have distance, time or temperature
- Units differ depending on the quantity

Example

Speed
Distance

One dimensional motion

Position vs. time graph

- Used to determine velocity
- Time is on the horizontal axis
- Position is on the vertical axis

Velocity vs. time graph

- Used to find acceleration
- Velocity is on the vertical axis
- Time is on the horizontal axis

One dimensional motion

Freefall

- Motion of a body when air resistance is negligible and the action can be considered due to gravity alone

Gravitational Acceleration

- The acceleration of an object in freefall that results from the influence of Earths gravity.
- Units $=\mathrm{m} / \mathrm{s}^{2}$

$$
\begin{gathered}
\text { Formula } \\
g=\text { gravity } \rightarrow 9.8 \mathrm{~m} / \mathrm{s}^{2} \\
\mathbf{a}=\frac{\Delta v}{\mathrm{t}}=\frac{-9.8 \mathrm{~m} / \mathrm{s}}{1 \mathrm{~s}}
\end{gathered}
$$

Newton's Laws

Inertia

- The tendency of an object to resist change
Example

Newton's laws

Free Body Diagram

- Diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.

Net force

- The overall force acting on an object.
- Units are(N) Force

Formula \rightarrow

$$
F=m a
$$

Example
Push $1+$ Pull $1=$ Net Force 2 to the right

$\mathrm{F}=$ Net force
$\mathrm{m}=$ mass
$a=$ acceleration

Newton's Laws

Newton's $1^{\text {st }}$ Law

- An object at rest stays at rest and an object in motion stays in motion with the same speed and in the same direction unless acted upon by an unbalanced force.

Example

Equilibrium

- When all the forces that act upon an object are balanced

Example

These two objects are at equilibrium since the forces are balanced. However, the forces are not equal.

Newton's Laws

Newton's 2nd Law

- states that the acceleration of an object is dependent upon the net force acting upon the object and the mass of the object

Newton's 3 ${ }^{\text {rd }}$ Law

- For every action, there is an equal and opposite reaction

Example

Momentum and Impulse

Momentum

- Mass in motion
- Depends on mass and velocity
- Unit is $\mathrm{kg} \bullet \mathrm{m} / \mathrm{s}$

Formula

$$
p=m \cdot v
$$

$\mathbf{P}=$ Momentum
$\mathbf{M}=$ Mass
V= Velocity

Impulse

- Relates to Newton's $2^{\text {nd }}$ Law
- Change in momentum
- Unit is $\mathrm{kg} \bullet \mathrm{m} / \mathrm{s}$ or $\mathrm{N} \bullet \mathrm{s}$

Formula

Work, Power, and Energy

Work

- When a force acts upon an object to cause a displacement of the object

Formula

W=f*d
W=work
F=force
D=displacement

Potential Energy

- The stored energy of position possessed by an object.
- Gravitational potential energy and Elastic potential energy
- Unit is Joule

Formula
Gravitational Potential Energy
P.E. $=\mathrm{m} \times \mathrm{gxh}$
m : mass
g: Gravitational Acceleration ($9.8 \mathrm{~m} / \mathrm{s}$)
h: Height
Buzzie.com

Work, Power, and Energy

Kinetic Energy

- energy of motion
- Unit is Joule

Formula
$\mathrm{KE}=0.5 \cdot \mathrm{~m} \cdot \mathrm{v}^{2}$
m = mass of object
$\mathbf{v}=$ speed of object
Kinetic energy

Mechanical Energy

- The energy that is possessed by an object due to its motion or due to its position
- Mechanical energy can be either kinetic energy or potential energy

Formula

TME = PE + KE
PE=Potential Energy
KE=Kinetic Energy

Work, Power, and Energy

Power

- The standard metric unit is Wyatt
- The rate at which work is done

Formula

$$
\begin{gathered}
\text { Power }=\frac{\text { Work }}{\text { Time }}=\frac{\text { Force } \cdot \text { Displacement }}{\text { Time }} \\
\text { Power }=\text { Force } \bullet \frac{\text { Displacement }}{\text { Time }}
\end{gathered}
$$

$$
\text { Power }=\text { Force } \cdot \text { Velocity }
$$

Periodic Motion

Wave

- Can be described as a disturbance that travels through a medium from one location to another location.
- The repeating and periodic disturbance that moves through a medium from one location to another is referred

Transverse Wave

- Particles of the medium move in a direction perpendicular to the direction that the wave moves

Transverse Wave

Dirn of Energy Transport

Periodic Motion

Longitudinal Wave

- particles of the medium move in a direction parallel to the direction that the wave moves

Longitudinal Wave
Particle Movement
$\leftarrow \rightarrow \leftarrow \rightarrow$
-

Dirn of Energy Transport

Example

Sound Waves

Mechanical Wave

- A wave that is not capable of transmitting its energy through a vacuum.
- Require a medium in order to transport their energy from one location to another.

Example

Sound Waves
Water Waves

Ocean Waves are Mechanical Waves

Periodic Motion

Amplitude

- The maximum amount of displacement of a particle on the medium from its rest position.
- The distance from rest to crest

The amplitude of a wave is related to the energywhich it transports.

Wavelength

- The length of one complete wave cycle
- Units are Lambda

$$
\text { Wavelength }(\lambda)=\frac{\text { Velocity }(v)}{\text { Frequency }(f)}
$$

Periodic Motion

Speed

- The distance traveled by a given point on the wave in a given period of time.
- Units=m/s
- Speed = Wavelength - Frequency

Formula

$$
v=\frac{\lambda}{T}
$$

$v \quad: \operatorname{speed}\left(m . s^{-1}\right)$
λ : wavelength (m)
$T \quad: \operatorname{period}(s)$

Frequency

- How often the particles of the medium vibrate when a wave passes through the medium.
- Unit for frequency is the Hertz (Hz)
- 1 Hz is equivalent to 1 cycle/second.

Formula

$$
\text { period }=\frac{1}{\text { frequency }} \quad \text { frequency }=\frac{1}{\text { period }}
$$

Example
nun-

Periodic Motion

Period

- The time for a particle on a medium to make one complete vibrational cycle.
- Measured in units of time such as seconds, hours, days or years.

Formula

period $=\frac{1}{\text { requencry }} \quad$ trequeny $=\frac{1}{\text { period }}$

Pendulum

- An object that is considered to vibrate.
Example
Mass on a spring

Periodic Motion

Period of a Pendulum

- The time it takes for the pendulum to complete one full cycle
- The mass of the Pendulum, and the length of the string affects the period of a pendulum

Formula

$T=2 \pi \sqrt{\frac{L}{g}}$
L=length
g=gravitational acceleration

Spring Force

- The force exerted by a compressed or stretched spring upon any object that is attached to it
- Magnitude of the force is proportional to the amount of stretch or compression of the spring.

Formula
$F_{\text {spring }}=-k \cdot x$
$\mathbf{F}_{\text {spring }}=$ Force exerted upon the spring
X= Displacement
K= spring constant.

Periodic Motion

Potential Energy of a Spring

- The amount of force is directly proportional to the amount of stretch or compression

Elastic Potential Energy

$$
\text { P.E. }=1 / 2 \mathrm{Kx}^{2}
$$

K: Spring Constant
x : Spring Displacement

Buzzle.com

Reflection

- Waves reflect in a way that the angle at which they approach the barrier equals the angle at which they reflect off the barrier.
- incident ray- ray of light approaching the mirror
- Reflected ray-ray of light that leaves the mirror
- Normal line-the point of incidence where the ray strikes the mirror
- Angle of incidence-angle between the incident ray and the normal
- Angle of reflection-angle between the reflected ray and the normal

Periodic Motion

Interference

- When two waves meet while traveling along the same medium.
- Causes the medium to take on a shape that results from the net effect of the two individual waves upon the particles of the medium.

Refraction

- Involves a change in the direction of waves as they pass from one medium to another.
- (the bending of the path of the waves)
- a change in speed and wavelength of the waves.

Sound Waves

Node

- The position along a medium that appear to be stationary
- Points of no displacement

Antinode

- points along the medium that undergo the maximum displacement during each vibrational cycle of the standing wave.
- Opposite of a Node

Sound Waves

Pitch

- The word used to refer to frequency
- High pitch=high frequency
- Low pitch= low frequency

Loudness

- Relates to the amplitude
- Higher the amplitude of a wave the louder
- Lower the amplitude the quieter

Sound Waves

Open ended pipe

- When a column of air is capable of being forced into vibrational resonance
- Both ends of the pipe are open to surrounding air
- Air is able to vibrate back and forth

OPEN TUBE

Fundamental: Closed tube

2nd Overtone: Closed tube

Closed ended pipe

- When a column of air is capable of being forced into vibrational resonance
- One end of the pipe is closed to the surrounding air and the other end is open to the surrounding air
- Air at the open end is able to vibrate back and forth(forms an antinode
- Air at the closed end isn't able to vibrate back and forth(forms a node)

Sound Waves

Standing Wave

- When a wave appears to be standing still

Example

First Overtone 2nd Harmonic

Second Overtone 3ed Harmonic

Third Overtone 4th Harmonic

And so on

$\boldsymbol{\lambda}=\frac{2}{1} \mathrm{~L} . \boldsymbol{\lambda}=\frac{2}{2} \mathrm{~L} . \boldsymbol{\lambda}=\frac{2}{3} \mathrm{~L} \quad \boldsymbol{\lambda}=\frac{2}{4} \mathrm{~L}$

Harmonics

- Frequencies and their associated wave patterns
Examples

First Harmonic Standing Wave Pattern

Anti-node
Second Harmonic Standing Wave Pattern

Charge and Electric Force

Charge

- Measured in units of Coulombs
- Positive charge
- Negative charge
- Neutral charge
- The quantity of charge on an object reflects the amount of imbalance between electrons and protons on that object

> Like charges repel each other

Opposite charges attract each other

Charges and Electric Force

Proton
In nucleus
Tightly Bound
Positive Charge
Massive

Electron
Outside nucleus
Weakly Bound
Negative Charge
Not very massive

The charge on a single electron is -1.6×10^{-19} Coulomb. The charge on a single proton is $+1.6 \times 10^{-19}$ Coulomb

Charge and Electric Force

Coulombs Law

- electrical force between two charged objects is directly proportional to the product of the quantity of charge on the objects and inversely proportional to the square of the separation distance

$q_{1}=$ point charge\#1
$q_{2}=$ point charge H2
$\mathrm{k}=$ Coulomb's Constant $=9 \times 10^{5} \mathrm{Nm}^{2} / \mathrm{C}^{2}$
r $=$ distance separating the charges
\dot{f} :indicates the direction of ther - vector from charge 1 to 2

Electric Force

- The attractive or repulsive interaction between any two charged objects

