Sample Data Collection and Processing

Table 1: Time vs. Distance traveled by motorized car (Raw Data)

		Distance$d / \mathrm{m}$$\Delta d= \pm .01 \mathrm{~m}$				
		10	20	30	40	50
$\begin{gathered} \text { Time } \\ \mathrm{t} / \mathrm{s} \\ \Delta \mathrm{t}= \pm 0.1 \mathrm{~s} \end{gathered}$	Trial 1	5.3	9.8	13.9	19.2	24.0
	Trial 2	5.8	9.1	14.4	19.0	23.9
	Trial 3	5.0	9.5	14.0	19.5	23.7

* Briefly explain why you chose your uncertainty values.

Table 2: Average Time vs. Distance traveled by motorized car (Processed Data)

	Distance d / m $\| 0.10$						0.20	0.30	0.40	0.50
Average Time tavg/s	5.4	9.5	14.1	19.2	23.9					
Average Time Error Δ tavg/s	0.4	0.4	0.3	0.3	0.2					
Minimum value	5.0	9.1	13.9	19.0	23.7					
Maximum value	5.8	9.8	14.4	19.5	24.0					

* Briefly explain how you processed your data (averages, sums/differences, etc.)
* Include example calculations of each type of processed data
* Include uncertainty sample calculations and explanations

$$
\begin{aligned}
& t_{\text {avg }}=\frac{t_{1}+t_{2}+t_{3}}{3}=\frac{(5.3+5.8+5.0)}{3} \approx 5.4 \mathrm{~s} \\
& \Delta t_{\text {avg }}=\frac{t_{\text {max }}-t_{\text {min }}}{2}=\frac{(5.8-5.0)}{2} \approx 0.4 \mathrm{~s}
\end{aligned}
$$

Average Time vs. Distance

[^0]The computer generates the best-fit line with a gradient (slope) $\boldsymbol{m}=46.767 \mathrm{~s} \mathrm{~m}^{-1}$
The average speed is then calculated with thhis value:

$$
v=\frac{d}{t}=\frac{1}{m}=\frac{1}{46.767 \mathrm{sm}^{-1}}=0.02138 \approx 0.02 \mathrm{~ms}^{-1}
$$

The minimum and maximum experimental values of speed are calculated based on the uncertainty bars for average time using the first and last data points

$$
\begin{aligned}
& v_{\max }=\frac{1}{m_{\max }}=\frac{1}{\frac{(23.7-5.8)}{(.50-.10)}}=0.0224 \mathrm{~ms}^{-1} \\
& v_{\min }=\frac{1}{m_{\min }}=\frac{1}{\frac{(24.0-5.0)}{(.50-.10)}}=0.0211 \mathrm{~ms}^{-1} \\
& \Delta v= \pm \frac{v_{\max }-v_{\min }}{2}= \pm \frac{(0.0224-0.211) \mathrm{ms}^{-1}}{2}= \pm 0.00065 \mathrm{~ms}^{-1} \approx \pm 0.00 \mathrm{~ms}^{-1}
\end{aligned}
$$

The overall average speed and its uncertainty are thus:

$$
v \pm \Delta v=(0.02 \pm 0.00) \mathrm{ms}^{-1}
$$

[^0]: * Explanations/calculations of processed data, max/min gradients \& uncertainty.

