Sample Data Collection and Processing

				/		/	
		Distance					
		d/m					
		Δd = ± .01 m					
		10	20	30	40	50	
Time	Trial 1	5.3	9.8	13.9	19.2	24.0	
t/s ∆t= ±0.1s	Trial 2	5.8	9.1	14.4	19.0	23.9	
	Trial 3	5.0	9.5	14.0	19.5	23.7	

Table 1: Time vs. Distance traveled by	v motorized car ((Raw Data)
Tuble 1: Time V3: Distance traveled b	y 111010112Cu cui j	naw Dataj

* Briefly explain why you chose your uncertainty values.

Table 2. Average T	Time ve Distance	travalad by	matarized car	(Dracassad Data)
Table 2. Average 1	Time vs. Distance	ti aveleu by	motorizeu car	(Processeu Dala)

	Distance d/m $\Delta d = \pm .01 m$				
	0.10	0.20	0.30	0.40	0.50
Average Time tavg/s	5.4	9.5	14.1	19.2	23.9
Average Time Error Δtavg/s	0.4	0.4	0.3	0.3	0.2
Minimum value	5.0	9.1	13.9	19.0	23.7
Maximum value	5.8	9.8	14.4	19.5	24.0

* Briefly explain how you processed your data (averages, sums/differences, etc.)

* Include example calculations of each type of processed data

* Include uncertainty sample calculations and explanations

$$t_{avg} = \frac{t_1 + t_2 + t_3}{3} = \frac{(5.3 + 5.8 + 5.0)}{3} \approx 5.4 \text{ s}$$

 $\Delta t_{avg} = \frac{t_{max} - t_{min}}{2} = \frac{(0.0 - 0.0)}{2} \approx 0.4 \text{ s}$

* Explanations/calculations of processed data, max/min gradients & uncertainty.

The computer generates the best-fit line with a gradient (slope) $m = 46.767 \text{ sm}^{-1}$ The average speed is then calculated with thhis value:

$$v = \frac{d}{t} = \frac{1}{m} = \frac{1}{46.767 \, sm^{-1}} = 0.02138 \approx 0.02 \, ms^{-1}$$

The minimum and maximum experimental values of speed are calculated based on the uncertainty bars for average time using the first and last data points

$$v_{max} = \frac{1}{m_{max}} = \frac{1}{\frac{(23.7 - 5.8)}{(.50 - .10)}} = 0.0224 \ ms^{-1}$$

$$v_{min} = \frac{1}{m_{min}} = \frac{1}{\frac{(24.0 - 5.0)}{(.50 - .10)}} = 0.0211 \ ms^{-1}$$

$$\Delta v = \pm \frac{v_{max} - v_{min}}{2} = \pm \frac{(0.0224 - 0.211)ms^{-1}}{2} = \pm 0.00065 \ ms^{-1} \approx \pm 0.00ms^{-1}$$

The overall average speed and its uncertainty are thus:

 $v \pm \Delta v = (0.02 \pm 0.00) m s^{-1}$