A net force of 25 newtons is applied horizontally to a 10.-kilogram block resting on a table. What is the magnitude of the acceleration of the block?

- (1) 0.0 m/s²
- (3) 0.40 m/s²
- (2) 0.26 m/s²
- (4) 2.5 m/s²

A net force of 10. newtons accelerates an object at 5.0 meters per second². What net force would be required to accelerate the same object at 1.0 meter per second²?

- (1) 1.0 N
- (3) 5.0 N
- (2) 2.0 N
- (4) 50. N

Two forces are applied to a 2.0-kilogram block on a frictionless, horizontal surface, as shown in the diagram below.

Frictionless Surface

The acceleration of the block is

- (1) 5.0 m/s2 to the right
- (2) 5.0 m/s² to the left
- (3) 3.0 m/s2 to the right
- (4) 3.0 m/s² to the left

What is the magnitude of the net force acting on a 2.0×10^3 -kilogram car as it accelerates from rest to a speed of 15 meters per second in 5.0 seconds?

- (1) $6.0 \times 10^3 \text{ N}$
- (3) $3.0 \times 10^4 \text{ N}$
- (2) $2.0 \times 10^4 \text{ N}$
- (4) $6.0 \times 10^4 \text{ N}$

If a 30-newton force is required to accelerate a 2-kilogram object at 10 meters per second², over a level floor, then the magnitude of the frictional force acting on the object is

(1) 0 N

(3) 20 N

(2) 10 N

(4) 30 N

A 35-kg child is climbing a rope to get to a tree fort. What is the tension in the rope if

- the child is climbing the rope at a constant speed?
- the child is accelerating up the rope at 3 ms⁻²?
- the child is resting on the rope?
- the child is resting on the rope, but the rope is attached to a crane and accelerated upward at 3 ms⁻²?

What average force is needed to accelerate a 7.00-gram pellet from rest to 125 ms ⁻¹ over a distance of 0.800 m along the barrel of a rifle?

A 5 kg block rests on a flat plane inclined at an angle of 30 degrees to the horizon as shown in the diagram below.

- 1. (MC) What would be the acceleration of the block down the plane assuming the force of friction is negligible?
- $(A) 0.5 \text{ m/s}^2$
- (B) 0.87 m/s²
- (C) 5 m/s²
- $(D) 8.7 \text{ m/s}^2$
- (E) 10 m/s²

- 2. (MC) If the block is placed on a second plane (where friction is significant) inclined at the same angle, it will begin to accelerate at 2.0 m/s. What is the force of friction between the block and the second inclined plane?
- (A) 10 N
- (B) 15 N
- (C) 25 N
- (D)43.3 N
- (E) 50 N

Two blocks, each with mass m, are connected by a string and accelerated to the right by a single force P (pull). Friction is negligible.

• Solve for the acceleration of the first mass. Express your answers in terms of m and P only. $\alpha = P$

 Solve for the tension in the string connecting the blocks in terms of P only.

$$T=ma$$

$$T=m\left(\frac{P}{2m}\right)$$

$$T=\frac{P}{2}$$

Them

Thom

$$F_g$$
 F_g
 $F_$

(MC) Two blocks of mass 1.0 kg and 3.0 kg are connected by a string which has a tension of 2.0 N. A force F acts in the direction shown to the right.

Assuming friction is negligible, what is

the value of F?

T=2N

$$T=2N$$

 $T=2N$
 $T=2N$

$$SF=F_{net}=F-T$$
 $m_2a=F-T$
 $+T$
 $F=m_2a+T$
 $F=(3kg)(2ms^{-2})+2N$
 $F=8N$

Two blocks, one with mass m and the other with mass 2m, are connected by a string and accelerated upwards by a single force P (pull).

- Solve for the acceleration of mass 2m in terms of m, P, and g. $\alpha = \frac{1}{2m} \frac{1}{2m}$
- Solve for the tension in the string connecting the blocks in terms of P only.

P
$$ma = P - (2ma + 2m)q - mg$$

 $ma = P - 2ma - 2mq - mg$
 $ma = P - 2ma - 3mg$
 $+ 2ma + 2ma$
 $T = 3ma = P - 3mg$
 F_g
 $STF = F_{net} = P - T - F_g$
 $ma = P - T - mg$
 $ma = P - T - mg$
 $ma = P - 3mq$
 $ma = P - T - mg$
 $ma = P - 3mq$
 $ma = P - 3mq$
 $ma = P - T - mg$

 $2F=F_{not}=T-F_g$ 2ma=T-2mg +2mq +2mq

$$T = 2ma + 2mg$$

$$T = 2m \left(\frac{P - 3mg}{3m}\right) + 2mg$$

$$T = 2\left(\frac{P - 3mg}{3}\right) + 2mg$$

$$T = \left(\frac{2P - 6mg}{3}\right) + 2mg$$

$$T = \frac{2P}{3} - 2mg + 2mg$$

$$T = \frac{2P}{3} - 2mg + 2mg$$

• What is the acceleration of the 5 kg block?

$$\Sigma F = F_{not} = T - F_{g}$$

$$-m_{2}a = T - m_{2}g$$

$$-m_{1}a = (m_{1}a) - m_{2}g$$

$$-m_{1}a - m_{1}a$$

$$m_{1}a - m_{2}a = -m_{2}g$$

$$m_{1} - m_{2}a = -m_{2}g$$

$$a = \frac{(-m_1 - m_2)}{(-5 - 10)}$$

$$a = 6.53 \text{ ms}^{-2}$$

• How long does it take the 5 kg block to reach the edge of the table?

$$S = yt^{0} + \frac{1}{2}at^{2}$$

$$S = \frac{1}{2}at^{2} \implies (.5) = \frac{1}{2}(6.53)t^{2}$$

$$\therefore t = \frac{2s}{a} = \frac{2(.5)}{(6.53)}$$

$$(t = .391s)$$

 How fast is the 5 kg block moving when it reaches the edge of the table?

$$V = u + at$$

 $V = (0) + (6.53)(39)$
 $V = 2.56 \text{ ms}^{-1}$

• How far does the 5 kg block land from the base of the table?

$$S_{x} = U_{x}t$$
 $S_{x} = U_{x}t$
 $S_{x} = U_{x}t$
 $S_{x} = (2.56)(.45)$
 $S_{x} = (2.5$

Sx=___m

$$Sy = 4yt + \frac{1}{2}ayt^{2}$$

$$(-1) = (0)t + \frac{1}{2}(9.8)t^{2}$$

$$\frac{-1}{-4.9} = -\frac{4.9}{4.9}t^{2}$$

$$\frac{1}{4.9} = t^{2}$$

$$t = .452.5$$