Free Fall Notes:

- · vertical motion (up (+) or down (-))
- · neglect air resistance
- acceleration of gravity (g) $igg = 9.8 \text{ m s}^{-2}$ down

$$a = -9.8 \text{ms}^{-2}$$
 $(a = -9)$

use kinematic equations by=u+at bs=

$$L_{3}S = ut + \frac{1}{2}at^{2}$$

 $L_{3}V^{2} = u^{2} + 2aS$

Particle Models

- (1) Object dropped
- 2) Object thrown downward
- ations about then up and then $L > S = \frac{(u+v)}{2} + falls back down.$

Example Problem:

At 1.5 m above the ground, a ball is thrown upward at a speed of 3.5 ms⁻¹.

- (a) Determine the maximum height.
- (b) How long does it take for the ball to hit the ground?
- (c) At what speed does the ball hit the ground?

Example Problem:

At 1.5 m above the ground, a ball is thrown upward at a speed of 3.5 ms⁻¹.

- (a) Determine the maximum height.
- (b) How long does it take for the ball to hit the ground?
- (c) At what speed does the ball hit the ground?

(a) Determine the maximum height.

 $h = 2.1 \, m$

$$u = 3.5 \text{ ms}^{-1}$$

$$v = 0 \text{ ms}^{-1}$$

$$v = 0 \text{ ms}^{-1}$$

$$a = -9.8 \text{ ms}^{-2}$$

$$t_{up}$$

$$h = s_{up} + 1.5 \text{m}$$

$$s_{up} = \underline{\qquad} \text{m}$$

$$v^2 = u^2 + 2as --> s = (v^2 - u^2)/2a$$

$$s = ((0)^2 - (3.5)^2)/2(-9.8)$$

$$s = 0.625 \text{ m}$$

$$h = 0.625 + 1.5 = 2.125$$

(b) How long does it take for the ball to hit the ground?

$$u_{up} = 3.5 \text{ ms}^{-1}$$

 $s_{up} = 0.625 \text{ m}$
 $a = -9.8 \text{ ms}^{-2}$
 $v_{up} = 0 \text{ ms}^{-1}$
 $u_{dn} = 0 \text{ ms}^{-1}$
 $s_{dn} = -2.1 \text{ m}$

$$t_{total} = t_{up} + t_{dn} =$$
____s

$$v = u + at --> t_{up} = (v_{up} - u_{up})/a$$

 $t_{up} = (0 - 3.5)/(-9.8) = .3571 s$

$$s = ut + (1/2) a t^2 = (1/2) a t^2$$

 $t_{dn} = sqrt (2s_{dn}/a)$
 $t_{dn} = sqrt (2(-2.1)/(-9.8)) = .6547 s$

$$t_{total} = 1.0s$$

(c) At what speed does the ball hit the ground?

$$t_{dn} = .6547 \text{ s}$$
 $u_{dn} = 0 \text{ ms}^{-1}$
 $a = -9.8 \text{ ms}^{-2}$
 $s_{dn} = -2.1 \text{ m}$

$$v_{dn} = \underline{\qquad} \text{ms}^{-1}$$

$$v = u + at = (0) + (-9.8)(.6547) = 6.4 \text{ ms}^{-1}$$

HW Problem #1

A stone is dropped from the top of a cliff. It hits the ground below after 3.25 s. How high is the cliff?

$$t = 3.25$$

 $a = -9.8 \text{ ms}^{-2}$
 $u = 0 \text{ ms}^{-1}$
 $s = ___ m$
 $s = ut + (1/2) a t^2$
 $s = (0)(3.25) + (1/2) (-9.8) (3.25)^2$
 $s = 51.8 \text{ m}$

HW Problem #2

A ballplayer catches a ball 3.0 s after throwing it vertically upward. With what speed did he throw it, and what height did it reach?

```
t (total) = 3.0 s
v_{up} = 0 \text{ ms}^{-1}
a = -9.8 \text{ ms}^{-2}
u_{down} = 0 \text{ ms}^{-1}
s (total) = 0 m (|s_{up}| = |s_{down}|)
(i) u_{up} = ___ ms^{-1}
(ii) height = s_{up} = m
Assumption: B/c |s_{up}| = |s_{down}| then t (total) = 2* t<sub>up</sub>
So, t_{up} = 1.5 s
(i) v = u + at therefore u = v - at = (0) - (-9.8)(1.5) = 14.7 = 15 ms<sup>-1</sup>
(ii) s = ut + (1/2)at^2 = (15)(1.5) + (1/2)(-9.8)(1.5)^2 = 11.475 = 11 m
```

HW Problem #3

A hot-air balloon is descending at a rate of 2.0 m/s when a passenger drops a camera. If the camera is 45 m above the ground when it is dropped

- How long does it take for the camera to reach the ground?
- What is its velocity just before it lands?

$$u = -2.0 \text{ ms}^{-1}$$

 $s = -45 \text{ m}$
 $a = -9.8 \text{ ms}^{-2}$

(i)
$$t = ___ s$$

(ii) $v = ___ ms^{-1}$

(ii)
$$v^2 = u^2 + 2as --> v = sqrt (u^2 + 2as) = sqrt ((-2.0)^2 + 2(-9.8)(-45)) = v = -3.0 x 10 m$$

(i)
$$v = u + at --> t = (v - u)/a = (-29.77 - (-2.0))/(-9.8) = 2.8 s or 2.9 s$$

Free Fall Classwork:

36. (II) A baseball is hit nearly straight up into the air with a speed of 22 m/s. (a) How high does it go? (b) How long is it in the air?

- 38. (II) An object starts from rest and falls under the influence of gravity. Draw graphs of (a) its speed and (b) the distance it has fallen, as a function of time from t = 0 to t = 5.00 s. Ignore air resistance.
- 39. (II) A helicopter is ascending vertically with a speed of 5.20 m/s. At a height of 125 m above the Earth, a package is dropped from a window. How much time does it take for the package to reach the ground? [Hint: The package's initial speed equals the helicopter's.]