The analysis of motion we have been discussing in this Chapter is basically
algebraic. It is sometimes helpful to use a graphical interpretation as well; see
the optional Section 2-8.

m Falling Objects

One of the most common examples ol uniformly accelerated motion is that of an
object allowed to fall freely near the Earths surface. That a falling object is
accelerating may not be obvious at first. And beware of thinking, as was widely
believed until the time of Galileo (Fig. 2-17), that heavier objects (all faster than
lighter objects and that the speed of fall is propaortional (o how heavy the object is.

Galileo’s analysis of falling objects made use of his new and creative tech-
mique of imagining what would happen in idealized (simplified) cases, For free
fall, he postulated that all objects would fall with the same constant acceleration @) CAUTION
in the absence of air or other resistance. He showed that this postulate predicts fa: 1 fundl
that for an object falling from rest, the distance traveled will be proportional to
the square of the time (Fig. 2-18); that is, d ~ . We can see this fram
Eq. 2-1t1b. but Galileo was the first to derive this mathematical relation.
[Among Galileo’s great contributions to science was to establish such mathe-
matical relations, and Lo insist on specific experimental consequences that could
be guantitatively checked, such as o oc 1]

To suppart his claim that falling objects increase in speed as they fall, Galileo ¢ he during each successive
made use of a clever argument: a heavy stone dropped from a height of 2m Wil jpierval. which means it is
drive a stake into the ground much further than will the same stone dropped from  aecelerating.

a height of only 0.2 m. Clearly, the stone must be moving faster in the former case,

As we saw, Galileo also claimed that all objects. light or heavy. fall with the
sare acceleration, at least in the absence of air, If you hold a picce of paper
horizontally in one hand and a heavier object—say, a baseball—in the other,
and release them at the same time as in Fig. 2-19a. the heavier object will reach
the ground first, But if you repeat the expeniment, this time crumpling the paper
into a small wad (see Fig. 2-19b), vou will find that the two objects reach the
tfloor at nearly the same time,

Galileo was sure that air acts as a resistance to very light objects that have a
large surface area. But in many circumstances this air resistance is negligible. In a
chamber from which the air has been removed, even light objects like a feather or
a horizontally held piece of paper will fall with the same acceleration as any other
object (see Fig. 2
Galileo’s time, which makes Galileo’s achievement all the greater. Galileo is often
called the “father of modern science.” not only for the content of his science
{(astronomical discoveries, inertia, free fall), but also for his style or approach to
science (idealization and simplification, mathematization of theory, theories that
have lestable consequences, experiments to lest theoretical predictions).
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Galileo's specilic contribution to our understanding of the motion of falling
objects can be summarized as follows:

at a given location on the Earth and in the absence of air resistance, all
objects fall with the same constant aceeleration.

We call this acceleration the acceleration due to gravity on the Earth, and we
give it the symbol g. Its magnitude is approximately
g = 980m/s. |at surface of Earth]

In British units g is about 32 1/s", Actually, g varies slightly according to latitude
and elevation, but these variations are so small that we will ignore them Tor most
purposes, The effects of air resistance are often small, and we will neglect them for
the most part. However, air resistance will be noticeable even on a reasonably
heavy object if the velocity becomes large.” Acceleration due to gravity is a
vector, as is any acceleration, and its direction is towird the center of the Earth.

When dealing with freely falling objects we can make use of Egs. 2-11,
where for @ we use the value of g given above. Also, since the motion is vertical
we will substitute v in place of x.and w, in place of x;, We take ¥, = 0 unless
otherwise specified. 1 is arbitrary whether we choovse v 1o be positive in the
upward direction or in the downward divection; but we must be consistent about
it throughout a problem’s selution.

OSSR Falling from a tower. Suppose that a ball is dropped

[ey = 0) from a tower 70.0m high. How far will the ball have fallen after a
time &4 = 1.00s & = 2.00s, and 1; = 3.0087
APPROACH Let us take v as positive downward. We neglect any air resistance.
Thus the acceleration is g = g = +9.80 m/s’, which is positive because we
have chosen downward as positive. We set oy = 0 and v, = 0. We want to find
the position y of the ball after three different time intervals. Equation 2-11h,
with x replaced by y, relates the given gquantities (. a, and v,) to the unknown v,
SOLUTION Weset ¢ = ¢, = 1.00s in Eq.2-11b:

¥ =ty + sar
0+ sar; = 2(9.80m/&’)(1.00s)* = 4.90 m.
The ball has fallen a distance of 4.90m during the time interval ¢ =0 to
f, = LO0s. Similarly, after 2005 (= #). the ball's position is

% = %—at% = {;{980 m/s ) 2.008) = 19.6m.
Finally, after 3.00s (= 1), the ball’s position is (see Fig. 2-21)

v = tari = ${980m /s’ )(3.005) = 44,1 m,
NOTE Whenever we say “dropped.” we mean v, = 0.

LU SRS Thrown down from a tower. Suppose the ball in

Example 2-10 is threwn downward with an initial velocity of 300 m /s, instead
of being dropped. (@) What then would be its position after 1.00s and 2.00s7
(b) What would its speed be alter 1.00s and 2.005? Compare with the speeds
of a dropped ball.
APPROACH We can approach this in the same way as in Example 2-10,
Again we use Eq. 2-11b, but now @, is not zero.itis v, = 3.00m/s.
SOLUTION (a) AL + = 1.00s, the position of the ball as given by Eq. 2-11h is
v =yt + sar’ = (3.00m/s)(1.00s) + 3(9.80m/s’}(1.00s5)* = 7.90m.
Al ¢ = 2008, {ime interval ¢ = 0 to ¢ = 2,00 %), the position is
y=w0 + et = (300m/s){2.008) + 1980 m/sT)(2.008)° = 25.6 m.

As expected, the ball falls farther each second than if it were dropped with o, - 0,

"The speed of an objeet falling in air (or other Muid) does not increase indefinitely. If the object falls
far encough, it will reach a maximum velocity called the terminal velocity duc to air resistance.
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(h) The velocity is obtained from Eq. 2-11ax
v=w ta
300m/s + {9.80 m/s’)(1.00s) = 12.8m/s [at ¢, = 1.005s]
= 300m/s + (9.80m/s*)(2.00s) = 226m/s. [ats, = 2.005)
In Example 2- 10, when the ball was dropped (v, = 0), the first term {#,) in
these equations was zero, so

=0+ a
= (980 m/s*}(1.005) = 9.80m/s lat ¢, = 1.003]
= (.80 m/s°)(2.008) = 19.6m/s. [at 1; = 2.005]

NOTE For both Examples 2- 10 and 2-11, the speed increases linearly in time by
9.80 m/s during each second. But the speed of the downwardly thrown ball at any
moment is always 3.00 m/s (its initial speed) higher than that of a dropped ball.

OGP Ball thrown upward, |. A person throws a ball upward Bii=0)
into the air with an initial velocity of 15.0 m/s. Calculate (a) how high it goes,
and (b) how long the ball is in the air before it comes back to his hand.

APPROACH We are not concerned here with the throwing action, but only with \

the motion of the ball after it leaves the thrower's hand (Fig. 2-22) and until it Y

comes back to his hand again. Let us choose v to be positive in the upward direc-

tion and negative in the downward direction, (This is a different convention from

that used in Examples 2-10 and 2-11, and so illustrates our options.) The aceel-

eration due to gravity will have a negative sign, a = —g = —9.80m/s’. As the

ball rises, its speed decreases until it reaches the highest point (B in Fig. 2-22), fl

where its speed is zero for an instant; then it descends, with increasing speed.

SOLUTION (a) We consider the time interval from when the ball leaves the

thrower's hand until the ball reaches the highest point. To determine the

maximum height, we calculate the position of the ball when its velocity equals

zero (¢ = 0 at the highest point). At 1 = 0 (point A in Fig. 2-22) we have "

¥ =0, u, = 150m/s, and a = —9.80m/s’, At time ¢ (maximum height), =

p =0, =—980m/s’", and we wish to find v. We use Eq. 2-11c, replacing x

with y: v’ = » + 2ayv. We solve this equation for y:

e —wu 00— (150m/s)
2a 2A—9R0m/s")

The ball reaches a height of 11.5 m above the hand.

(b)) Now we need to choose a different time interval to calculate how long the
ball is in the air before it returns ta his hand. We could do this calculation in
two parts by first determining the time reqguired for the ball to reach its highest
point, and then determining the time it lakes to fall back down. However, it is
simpler to consider the time interval for the entire motion from A to B to'C  FIGURE 2-22  An object thrown
(Fig. 2-22) in one step and use Eq. 2-11b. We can do this because v (or x)  into the air leaves the thrower’s hand
represents position or displacement, and not the total distance traveled. Thus,at ~ at A, reaches its maximum height at

both points A and C, v = 0. We use Eq. 2—1Ibwith @ = ~9.80m/s® and find B-and returns to the original position
N at . Examples 2-12. 2-13.2-14.
v = gt + Lo and 2-15.

0= (15.0m/s)t + 3{-9.80m/s%)i°.
This equation is readily factored (we factor out one 7);
(150m/s — 490m/s’1) 1 = 0.

There are two solutions:

-
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The first solution (# = 0) corresponds (o the initial point (A) in Fig. 2-22, when the
ball was first thrown from y = 0. The second solution, 1 = 3.06s, corresponds
1o point €, when the ball has returned to v = 0. Thus the ball is in the air 3.06s
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We did not consider the throwing action in this Example. Why? Because during
the throw, the thrower’s hand is touching the ball and accelerating the ball at a
rate unknown to us—the acceleration is nor g. We consider only the time when
the ball is in the air and the acceleration is equal o g.

Every quadratic equation (where the variable is squared) mathematically
produces two solutions. In physies, sometimes only one solution corresponds Lo
the real situation, as in Example 2-7. in which case we ignore the “unphysical™
solution. But in Example 2-12, both solutions to our equation in ¢ are
physically meaningful: 1 = 0 and ¢ = 3.06s.

[ CONCEPTUAL EXAMPLE 2-13 | Two possible misconceptions. Give

examples to show the error in these two commaon misconceptions: (1) that accel-
eration and velocity are always in the same direction, and {2) that an object
thrown upward has zero acceleration at the highest point (B in Fig. 2-22).

RESPONSE Both are wrong. (1) Velocity and aceeleration are not necessarily in
the same direction. When the ball in Example 2-12 is moving upward, its velocity
is positive (upward), whereas the acceleration is negative (downward). (2) At the
highest point (B in Fig. 2-22), the ball has zero velocity for an instant. Is the
acceleration also zero at this point? No. The velocity near the lop of the are
points upward, then becomes zero (for zero time) at the highest point, and then
points downward. Gravity does not stop acting, so a = —g = —9.80m/s* even
there. Thinking that « = 0 at point B would lead to the conclusion that upon
reaching point B, the ball would stay there: if the acceleration (= rate of change of
velocity) were zero, the velocity would stay zero at the highest point, and the ball
would stay up there without falling. In sum, the acceleration of gravity always
points down toward the Earth, even when the object is moving up,

Ball thrown upward, Il. Let us consider again the ball
thrown upward of Example 2-12, and make more caleulations. Caleulate (a) how
much time it takes for the ball 1o reach the maximum height {point B in Fig, 2-22),
and (b) the velocity of the ball when it returns to the thrower’s hand (point C).

APPROACH Again we assume the acceleration is constant. so Egs 2-11 are valid,
We have the height of 115 m from Example 2-12, Again we take v as positive upward,
SOLUTION (a) We consider the time interval between the throw (@ = 0,
v, = 15.0m/s) and the top of the path (v = +11.53m), v = 0, and we want
to find . The acceleration is constant at g = —g = —9.80m/s*. Both
Egs. 2-11a and 2-11b contain the time ¢ with other quantities known. Let us
use Eq. 2-11a with a = —980m/s’, u, = 15.0m/s, and » =

¢ =ty + ar;
setting ¢ = 0 and solving for ¢ gives
oy 15.0m/s

a ~980m/s’
This is just half the time it takes the ball to go up and fall back (o its original
position [3.06 s, caleulated in part (b) of Example 2-12]. Thus it takes the same
time to reach the maximum height as to fall back to the starting point.
(b) Now we consider the time interval from the throw (1 = 0, », = 15.0m/s)
until the ball’s return to the hand, which occurs at 1 = 3.06s (as calculated
in Example 2-12), and we want to find » when 1 = 3.06s

v= oy +ar = 150m/s — (9.80m/s7)(3.065) = —15.0m/s.

NOTE The ball has the same magnitude of velocity when it returns to the
starting point as it did initially, but in the opposite direction (this is the
meaning of the negative sign). Thus, as we gathered from part (a), the motion
is symmetrical about the maximam height,

= [.53s
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EXERCISE C Two balls are thrown from a ¢hiff, Ong 18 thrown direetly up. the other
directly down. Both balls have the same initial speed. and beth hit the ground below
the cliff. Which ball hits the ground at the greater speed. (a) the ball thrown upward,
{B) the ball thrown downward. or (¢) both the same? lgnore air resistance. [Hint: See
the result of Example 2- 14, part (b).|

The acceleration of objects such as rockets and fast airplanes is often
given as a multiple of g = 9.80m/s’. For example, a plane pulling out of a
dive and undergoing 3.00 g's would have an acceleration of {3.00){9.80 m/s’) =
294 m/s.

| EXERCISE D If a car is said to accelerate at 0,50 g, what is ils acceleration in m/s"?

Additional Example—Using the Quadratic Formula

SLWHESSS LR Ball thrown upward, . For the ball in Example 2-14,
caleuliate at what time £ the ball passes a point 8.00 m above the person’s hand.

APPROACH We choose Lhe time interval from the throw (1 = 0, », = 15.0m/s)
until the time ¢ (to be determined) when the ball is at position v = 8.00m,
using Eq. 2-11h,

SOLUTION We want £ given v = 800m. v, =0, », = 150m/s, and
a = —980m/s", Weuse Eq. 2-11b:

¥E Y gt %m:
800m = 0 + (15.0m/s)r + 3+ —9.80m/s*)r%
To solve any quadratic equation of the form at’ + bt +¢ =0, where a, b,
and ¢ are constants (a is nor acceleration here), we use the quadratic formula
(see Appendix A-4):
b 4+ /B ~ dac
2a

I =
We rewrite our v equation just above in standard form, at” + bt + ¢ =
{4.90 m/s*)* — (15.0m/s)t + (ROOm) = 0.

So the coefficient a is 490 m/s*, b is —15.0m/s, and ¢ is 8.00 m. Putting these
into the quadratic formula, we obtain

150m/s £ /(150 m/s)’ — 4{4.90m /¢’ }(8.00m)
a 2(4.90m/s’)

[

which gives us 1 = 0.69s and 1= 2375 Are both solutions valid? Yes,
because the ball passes v = 8.00m when il goes up (f = 0.695) and again
when it comes down (¢ = 2.37s).

For some people, graphs can be a help in understanding. Figure 2-23 shows
graphs.of ¥ vs. t and © vs. 1 for the ball thrown upward in Fig. 2-22. incorporating
the results of Examples 2-12, 2-14, and 2-15. We shall discuss some useful
properties of graphs in the next Section.

We will use the word “vertical™ a lot in this book. What does it mean? (Try
to respond before reading on,) Vertical is defined as the line along which an
object falls. Or, if you put a small sphere on the end of a string and let it hang,
the string represents a vertical line (sometimes called a plumb line).

| EXERCISE E Whal does horizontal mean?
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FIGURE 2-23 Graphs of (a) v vs. 1,
(B} vvs. t for a ball thrown upward,
Examples 2-12, 2-14. and 2-15.

SECTION 2-7 Falling Objects 35



