To measure the volume of an object, two lengths  $I_1$  and  $I_2$  are measured.

$$l_1 = (0.25) \pm (0.05 \text{ cm}) \rightarrow \Delta \alpha$$

 $I_2 = 15.45 \pm 0.05 \,\mathrm{cm}$ 

## Calculate:

- (a) the % uncertainty in I1
- **(b)** the % uncertainty in  $I_2$
- (c) the area of the object
- (d) the % uncertainty in the area.

% uncertainty (
$$l_1$$
) =  $\frac{\Delta a}{a} = \frac{0.05 \text{ cm}}{10.25 \text{ cm}} * |00 = 0.05 \text{ cm}$   
= .4878%  
=  $[.5\%]$  (1 SF) ( $[a]$ )

To measure the volume of an object, two lengths  $I_1$  and  $I_2$  are measured.

$$I_1 = 10.25 \pm 0.05 \,\mathrm{cm}$$

$$I_2 = 15.45 \pm 0.05 \,\mathrm{cm}$$

Cr/culate:

- (a) the % uncertainty in I<sub>1</sub>
  - (b) the % uncertainty in I2
- (c) the area of the object
- (d) the % uncertainty in the area.

% uncertainty 
$$(l_2) = \frac{\Delta a}{a} * 100 = \frac{0.05 \text{cm}}{15.45 \text{cm}} * 100$$
  
= .3236%  
=  $(.3\%)$  (1SF)

To measure the volume of an object, two lengths 
$$l_1$$
 and  $l_2$  are measured.  $l_1 = 10.25 \pm 0.05$  cm  $l_2 = 15.49 \pm 0.05$  cm (A) Area =  $l_1 \times l_2$  (Calculate:

(a) the % uncertainty in  $l_2$  (c) the area of the object (d) the % uncertainty in the area. A =  $l_1 \times l_2$  (c) the % uncertainty in the area. A =  $l_1 \times l_2$  (d) the % uncertainty in the area. A =  $l_1 \times l_2$  (for the square of the object (d) the % uncertainty in the area. A =  $l_1 \times l_2$  (for the square of the object (d) the % uncertainty in the area. A =  $l_1 \times l_2 \times l_2 \times l_2 \times l_3 \times l_4 \times l_4$ 

To measure the volume of an object, two lengths  $l_1$  and  $l_2$  are measured.

$$I_1 = 10.25 \pm 0.05 \,\mathrm{cm}$$

$$I_2 = 15.45 \pm 0.05 \,\mathrm{cm}$$

Calculate:

- (a) the % uncertainty in l<sub>1</sub>
- **(b)** the % uncertainty in  $I_2$
- (c) the area of the object
- (d) the % uncertainty in the area.

$$\frac{158.4 \pm 1.3 \text{ cm}^2}{\text{2}}$$
% uncertainty =  $\frac{\Delta A}{A} * 100 = \frac{1.3}{158.4} * 100 = .8207%$ 

% uncertainty = % uncert  $\frac{1}{12}$  uncert  $\frac{1}{12}$   $\frac{1}{12}$ 

1 The diagram below shows the position of the meniscus of the mercury in a mercury-in-glass thermometer.



Which of the following best expresses the indicated temperature with its uncertainty?

- **A**  $(6.0 \pm 0.5)$ °C
- B (6.1 ± 0.1)°C
- **c** (6.2 ± 0.2)°C
- **D** (6.2 ± 0.5)°C

[1]

- 3 An ammeter has a zero offset error. This fault will affect
  - A neither the precision nor the accuracy of the readings.
  - B only the precision of the readings.
  - c only the accuracy of the readings.
  - D both the precision and the accuracy of the readings.

[1]



A  $49.8 \pm 0.2$  cm.

B  $49.8 \pm 0.4$  cm.

 $c_{50.0} \pm 0.2 \, \text{cm}$ 

D 50.0  $\pm$  0.4 cm.

(1)

The power dissipated in a resistor of resistance R carrying a current I is equal to  $I^2R$ . The value of I has an uncertainty of I and the value of I has an uncertainty of I the value of the uncertainty in the calculated power dissipation is

A ±8%.

B  $\pm 12\%$ .

 $C \pm 14\%$ .

D ±20%.

(1)

When a force F of (10.0  $\pm$  0.2) N is applied to a mass m of (2.0  $\pm$  0.1) kg, the percentage uncertainty attached to the value of the calculated acceleration  $\frac{F}{m}$  is A 2%.

8 5%.  
C 7%.  
D 10%.

% uncert. = 
$$\frac{.2}{10.0}$$
 \* 100 = 2%

% uncert. = 
$$\frac{1}{2.0} \times 100 = 5\%$$
  
% uncert. =  $\% F + \% m = 7\%$ 

The length of each side of a sugar cube is measured as  $10 \,\mathrm{mm}$  with an uncertainty of  $\pm 2 \,\mathrm{mm}$ . Which of the following is the absolute uncertainty in the volume of the sugar cube?

A. 
$$\pm 6 \text{ mm}^3$$

B. 
$$\pm 8 \text{ mm}^3$$

C. 
$$\pm 400 \,\mathrm{mm}^3$$

D. 
$$\pm 600 \,\mathrm{mm}^3$$

$$10mm \pm 2mm \qquad \Delta \sqrt{3} = 60\%$$

$$1 \pm \Delta l \qquad \sqrt{=1000}mm^3$$

$$V=1^3\pm3$$
 % uncert

$$V = \int_{0}^{3} \frac{1}{2} \int_{0}^$$

$$=60\% * 1000mm$$

The current in a resistor is measured as  $2.00A \pm 0.02A$ . Which of the following correctly identifies the absolute uncertainty and the percentage uncertainty in the current?

|    | Absolute uncertainty | Percentage uncertainty |
|----|----------------------|------------------------|
| A. | ±0.02A               | ±1%                    |
| В. | ±0.01A               | ±0.5%                  |
| C. | ±0.02A               | ±0.01%                 |
| D. | ±0.01A               | ±0.005%                |

2.00 A 
$$\pm$$
 0.02 A)

2.00 A  $\pm$  0.02 A)