IB Physics SL Y1- Spring 2015 - Final Exam Review

Final Exam Date:

1B: Thursday, May 21, 2015 3A: Friday, May 22, 2015

Final Exam Review Schedule:

1B 3A

Day 1: Friday, May 15, 2015
Day 2: Tuesday, May 19, 2015
Day 2: Monday, May 18, 2015

Tutorial: Sunday, May 17, 2015 from 11:00 am to 1:00 pm at the Howell Mill Starbucks

Final Exam Topics:

Applications of Newton's Laws

Force(Types, FBD)

Newton's First Law (Inertia, Equilibrium) Newton's Second Law (Net force = ma)

Inclined planes

Newton's Third Law

Momentum and Impulse

Momentum

Impulse (Change in momentum)
Conservation of momentum

Work, Power, and Energy

Work

Kinetic and Potential Energy

Mechanical Energy

Power

Final Exam Structure:

Section I – Multiple Choice (15 problems)

Section II – Free Response (3 problems)

Sub-topic 2.1 – Motion	Sub-topic 2.2 – Forces
v = u + at	F = ma
$s = ut + \frac{1}{2}at^2$	$F_{\mathbf{f}} \leq \mu_{\mathbf{s}} R$
$v^2 = u^2 + 2as$	$F_{\mathbf{f}} = \mu_{\mathbf{d}} R$
$s = \frac{(v+u)t}{2}$	
Sub-topic 2.3 – Work, energy and power	Sub-topic 2.4 – Momentum and impulse
$W = Fs \cos\theta$	p = mv
$E_{\rm K} = \frac{1}{2} m v^2$	$F = \frac{\Delta p}{\Delta t}$
$E_{\mathbf{p}} = \frac{1}{2} k \Delta x^2$	
$\Delta E_{\mathbf{p}} = mg\Delta h$	$E_{\rm K} = \frac{p^2}{2m}$
power = Fv	Impulse = $F\Delta t = \Delta p$
$Efficiency = \frac{useful \ work \ out}{total \ work \ in}$	
$= \frac{\text{useful power out}}{\text{total power in}}$	