Alpha Decay

General equation: $\begin{array}{c} A \\ z \\ z \end{array} \xrightarrow{A-4} Y + \begin{array}{c} 4 \\ -2 \\ z \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ (4 \\ -2 \\ (4 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ (4 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ (4 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ (4 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ (4 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ (4 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ (4 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ (4 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ (4 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ (4 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ (4 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ -2 \\ (4 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ -2 \\ (4 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ -2 \\ (4 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ -2 \\ (4 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ -2 \\ -2 \\ (4 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ -2 \\ -2 \\ (4 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ -2 \\ -2 \\ (4 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ -2 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ -2 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ -2 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ -2 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ -2 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ -2 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \\ -2 \end{array} \begin{array}{c} 4 \end{array} \begin{array}{c} 4 \\ -2 \end{array} \begin{array}{c} 4 \\ -2 \end{array} \begin{array}{c} 4 \end{array} \begin{array}{c} 4 \\ -2 \end{array} \begin{array}{c} 4 \end{array} \begin{array}{c} 4 \\ -2 \end{array} \begin{array}{c} 4 \end{array} \begin{array}{c} 4 \end{array} \begin{array}{c} 4 \end{array} \begin{array}{c} 4 \\ -2 \end{array} \begin{array}{c} 4 \end{array} \begin{array}{c} 4$ Where does the kinetic energy come from? rest mass of nucleons $(m_{nucleons} = \Delta m + M_{nucleons})$ **Result**: nucleus is in a more stable state with $m_{nucleus}$ higher binding energy and higher binding energy per nucleon.

A radium nucleus, initially at rest, decays by the emission of an alpha particle into radon in the reaction described above. The mass of $_{88}^{226}$ Ra is 226.025402 u and the mass of $_{86}^{222}$ Rn is 222.017571 u and the mass of the alpha particle is 4.002602 u.

a) Calculate the energy released in this decay.

 $\Delta M = m_{\text{products}} - m_{\text{react}} + m_{\text{Rn}} - m_{\text{Ra}} - - M$

A radium nucleus, initially at rest, decays by the emission of an alpha particle into radon in the reaction described above. The mass of $_{88}^{226}$ Ra is 226.025402 u and the mass of $_{86}^{222}$ Rn is 222.017571 u and the mass of the alpha particle is 4.002602 u.

b) Compare the momenta, speeds, and kinetic energies of the two particles produced by this reaction

A radium nucleus, initially at rest, decays by the emission of an alpha particle into radon in the reaction described above. The mass of $_{88}^{226}$ Ra is 226.025402 u and the mass of $_{86}^{222}$ Rn is 222.017571 u and the mass of the alpha particle is 4.002602 u.

 c) If the kinetic energy of the alpha particle is 4.77 MeV, calculate its speed.

 $V_{\alpha} = \sqrt{\frac{2 \text{ KE}_{\alpha}}{m_{\alpha}}} = \sqrt{\frac{2(4.77 \times 10^{6} \text{ eV})(1.6 \times 10^{-19})}{(4.002602 \text{ W})(1.661 \times 10^{-19})}}$ $V_{\alpha} = 1.5 \times 10^{7} \text{ ms}^{-1}$

KE===m_v2

A radium nucleus, initially at rest, decays by the emission of an alpha particle into radon in the reaction described above. The mass of $_{88}^{226}$ Ra is 226.025402 u and the mass of $_{86}^{222}$ Rn is 222.017571 u and the mass of the alpha particle is 4.002602 u.

d) Calculate the recoil speed of the radon nucleus.

Beta Decay

Beta Decay

Oconclusion:

there is third particle involved with beta decay that carries away some KE and momentum – virtually undetectable

Neutrino and anti-neutrino:

fundamental particles

no charge

very small mass

Denore accuj

After decay

Beta-plus decay

Example reaction:

$$\frac{12}{7}N \rightarrow ^{12}_{6}C + ^{0}_{+1}e + ^{0}_{0}\nu + energy$$

General equation:

$$Z X \rightarrow A + 0 = 0$$

 $Z - X + 1 = 0$ + $V + energy$

How does this happen? Weak nuclear force

$$P \rightarrow \frac{1}{2}n + \frac{1}{6}c + \frac{1}{6}v + energy$$

Gamma Decay

Energy Spectra of Radiation

The nucleus itself, like the atom as a whole, is a quantum system with allowed states and discrete energy levels. The nucleus can be in any one of a number of discrete allowed excited states or in its lowest energy relaxed state. When it transitions between a higher energy level and a lower one, it emits energy in the form of alpha, beta, or gamma radiation. When an alpha particle or a gamma photon is emitted from the nucleus, only discrete energies are observed. *These discrete energy spectra give evidence that a nucleus has energy levels*. (However, the spectrum of energies emitted as beta articles is continuous due to its sharing the energy with a neutrino or antineutrino in any proportion.)

Energy Spectra of Radiation

Importance:

discrete energy spectra give evidence for nuclear energy levels

Alpha spectra	Beta spectra	Gamma spectra
discrete	Continuous	discrete

Ionizing Radiation

Ionizing Radiation – As this radiation passes through materials, it "knocks off" electrons from neutral atoms thereby creating an ion pair: <u>free electrons</u> and <u>a</u> <u>positive ion</u>. This ionizing property allows the radiation to be detected but is also dangerous since it can lead to mutations in biologically important molecules in cells, such as DNA.

Ionizing Radiation

Particle	helium nucleus	electron or positron	high-energy photon
Penetration ability	low	medium	high
Material needed to absorb it	sheet of pape (afew (cm of air)	foil (1mm)	lead (~ 10 cm)
Path length in air	afew cm	less than Im	

Radioactive Decay

- **Random process**: It cannot be predicted when a particular nucleus will decay, only the probability that it will decay.
- Spontaneous process: It is not affected by external conditions. For example, changing the pressure or temperature of a sample will not affect the decay process.
- ORATE OF decay decreases exponentially with time: Any amount of radioactive nuclei will reduce to half its initial amount in a constant time, independent of the initial amount.

Half-life $(T_{1/2})$

Ithe time taken for ½ of the radioactive nuclides in a sample to decay

Ithe time taken for the activity of a sample to decrease to ½ of its initial value

O Units:

time (s or hr or d or yr)

Activity

Activity (A) -

the number of radioactive disintegrations (decays) per unit time

Formula:

 $A = -\frac{\Delta N}{\Delta +}$

Units: $\frac{decays}{time} \left(\begin{array}{c} s^{-1}, hr^{-1}, d^{-1}, \\ yr^{-1} \end{array} \right)$ Standard units: Becquerel (Bq) 1Bq = 1 decay Per second

1. A sample originally contains 8.0×10^{12} radioactive nuclei and has a half-life of 5.0 seconds. Calculate the activity of the sample and its half-life after: (b) $A = \Delta N$ Δt $\Delta N = N_0 - N^{E}$ # of nuclei after los a) 5.0 s b) 10.s c) 15 s $\Delta N = (3.0 \times 10^{12}) - (2.0 \times 10^{12})$ (a) A = ANAN=GOXIO12 decaus $\Delta N = N_0 - N$ $=(8.0\times10^{12}-4.0\times10^{12})$ $\Delta t = 10$ s A= 6.0×10" Bg, $=4.0 \times 10^{12}$ nuclides (c) $\Delta N = (8.0 \times 10^{12}) - (1.0 \times 10^{12})$ $\Delta t = 5s$ A= AN=7.0×1012 decays A = H.OXID12 decays $\Lambda + = 15$ 5.0 \$ A=4.7x10" Bg A= 8.0×10" Bg

2. Samples of two nuclides X and Y initially contain the same number of radioactive nuclei, but the half-life of nuclide X is greater than the half-life of nuclide Y. Compare the initial activities of the two samples. $\frac{1}{2}T_{4}(X) = \oint T_{4}(Y)$

NX \$>Nor

:. A > A > Y

Activity of Y is greater

The Radioactive Decay Law: The rate at which radioactive nuclei in a sample decay (the activity) is proportional to the number of radioactive nuclei present in the sample at any one time.

[As the number of radioactive nuclei decreases, so does the average rate of decay (the activity).]

The initial activity (A₀) is directly related to the number of radioactive nuclei originally present (N₀) in the sample.

Initial Activity

AccN

 $A = \gamma N$

#T1/2/%Y

2 3

4

Activity

% X

50%

100% 100%

6.25 25%

50%

25%

12.5%

 $A_0 = N_0$

3. The isotope Francium-224 has a half-life of 20 minutes. A sample of the isotope has an initial activity of 800 disintegrations per second. What is the approximate activity of the sample after 1 hour?

 $A_{o} \propto N_{o}$

A = 800 BqNo = not given $T_{y_2} = 20 \min$ lh⇒3Tiz

N

Decay Constant (λ)

Constant of proportionality between the decay rate (activity) and the number of radioactive nuclei present.

 Probability of decay of a particular nuclei per unit time.

<u>Units</u>: inverse time (s⁻¹ or hr⁻¹ or d⁻¹ or yr⁻¹)

