Name: ______ Date: ______ Period: _____

Objectives:

- 5.1 Electric potential difference, current, and resistance
- 5.2 Electric circuits
- 1. A cell of emf ε and internal resistance r delivers current to a small electric motor.

450 C of charge flows through the motor and 9000 J of energy are converted in the motor. 1800 J are dissipated in the cell. The emf of the cell is

- A. 4.0 V.
- B. 16 V.
- C. 20 V.
- D. 24 V.
- 2. A cylindrical conductor of length I, diameter D and resistivity p has resistance R. A different cylindrical conductor of resistivity 2p, length 2l and diameter 2D has a resistance
 - A. 2*R*
 - B. *R*
 - C. $\frac{R}{2}$ D. $\frac{R}{4}$
- 3. In the circuits below the cells have the same emf and zero internal resistance. The resistors all have the same resistance.

Which of the following gives the ratio $\frac{\text{power dissipated in X}}{\text{power dissipated in Y}}$?

- A. ¼
- B. ½
- C. 1
- D. 4

- 4. Two rectangular blocks, X and Y, of the same material have different dimensions but the same overall resistance. Which of the following equations is correct?
 - A. resistivity of $X \times length of X = resistivity of Y \times length of Y$
 - length of X length of Y Β.
 - $\frac{1}{\text{cross sectional area of X}} = \frac{1}{\text{cross sectional area of Y}}$
 - С. resistivity of $X \times cross$ sectional area of X = resistivity of $Y \times cross$ sectional area of Y
 - length of X length of Y D.
 - $\frac{1}{\text{cross sectional area of Y}} = \frac{1}{\text{cross sectional area of X}}$
- 5. Two 6 Ω resistors are connected in series with a 6 V cell. A student incorrectly connects an ammeter and a voltmeter as shown below.

The readings on the ammeter and on the voltmeter are

	Ammeter reading / A	Voltmeter reading / V
A.	0.0	0.0
B.	0.0	6.0
C.	1.0	0.0
D.	1.0	6.0

6. The diagram shows a potential divider circuit.

In order to increase the reading on the voltmeter the

- A. temperature of R should be increased.
- B. temperature of R should be decreased.
- C. light intensity on R should be increased.
- D. light intensity on R should be decreased.

Part	2 Electrical resistance and electric circuits	
(a)	Define resistance and state Ohm's law.	[2]
	Resistance:	
	Ohm's law:	
(b)	A resistor made from a metal oxide has a resistance of 1.5Ω . The resistor is in the form of a cylinder of length 2.2×10^{-2} m and radius 1.2×10^{-3} m. Calculate the resistivity of the metal oxide.	[2]
(c)	The manufacturer of the resistor in (b) guarantees its resistance to be within $\pm 10\%$ of 1.5Ω provided the power dissipation in the resistor does not exceed 1.0 W. Calculate the maximum current in the resistor for the power dissipation to be equal to 1.0 W.	[2]

(This question continues on the following page)

(d) The resistance of each of the resistors in the circuit below is measured to be 1.5 Ω with an accuracy of ±10%.

The cell has an emf of 2.0V and negligible internal resistance.

(i)	Define <i>emf</i> .	[1]
(ii)	Determine the minimum and the maximum power that could be dissipated in this circuit.	[3]