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RANGE OF MAGNITUDES OF QUANTITIES

IN OUR UNIVERSE

1.1.1 State and compare quantities to the

 nearest order of magnitude.

1.1.2 State the ranges of magnitude of

 distances, masses and times that occur in

 the universe, from smallest to greatest.

1.1.3 State ratios of quantities as differences of

 orders of magnitude.

1.1.4 Estimate approximate values of everyday

 quantities to one or two significant

 figures and/or to the nearest order of

 magnitude.
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1.1.1 Order OF maGnitude

The order of magnitude of a number is the power of ten 
closest to that number. Oten when dealing with very big 

or very small numbers, scientists are more concerned with the 
order of magnitude of a measurement rather than the precise 
value. For example, the number of particles in the Universe and 
the mass of an electron are of the orders of magnitude of 1080 
particles and 10–30 kg. It is not important to know the exact values 
for all microscopic and macroscopic quantities because when 
you are using the order of magnitude of a quantity, you are giving 
an indication of size and not necessarily a very accurate value. 

he order of magnitude of large or small numbers can be 
diicult to comprehend at this introductory stage of the 
course. For example, 1023 grains of rice would cover Brazil 
to a depth of about one kilometre.

1.1.2 ranGe OF maGnitudes OF the 
uniVerse

he order of magnitude of some relevant lengths in metres 
(m), masses in kilograms (kg) and times in seconds (s) are 
given in Figure 101.

Mass of 
Universe

 10 50  kg Height of a person   10 0  m

Mass of Sun 10 30  kg 1 gram   10 –3  kg

Extent of the 
visible Universe

  10 25  m
Wavelength of visible 
light

  10 –6  m

Mass of the 
earth

  10 25  kg Diameter of an atom   10 –10  m

Age of the 
Universe

  10 18     s Period of visible light   10 –15  s

One light year   10 16  m
Shortest lived 
subatomic particle

  10 –23  s

Human light 
span

  10 9  s
Passage of light 
across the nucleus

  10 –23  s

One year   10 7  s Mass of proton  10 –27  kg

One day   10 5  s Mass of neutron  10 –27  kg

Mass of car   10 3  kg Mass of electron  10 –30  kg

Figure 101 Range of magnitudes

1.1 the realm OF Physics
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 Examples 

1. he number 8 is closer to 101 (10) than 100 (1). So 
the order of magnitude is 101. Similarly, 10 000 has 
an order of magnitude of 104.

2. However, 4.3 × 103 has an order of magnitude of 
104. he reason for this is if you use the log button 
on your calculator, the value of 4.3 × 103 = 103.633.

herefore the order of magnitude is 104. So, the normal 
mathematical rounding up or down above or below 5 
does not apply with order of magnitude values. In fact,  
100.5 = 3.16. his becomes our ‘rounding’ value in 
determining the order of magnitude of a quantity. 

Order of magnitude, for all its uncertainty, is a good 
indicator of size. Let’s look at two ways of calculating the 
order of magnitude of the number of heartbeats of a human 
in a lifetime. he average relaxed heart, beats at 100 beats 
per minute. Do you agree? Try the following activity: 

Using a timing device such as a wristwatch or a stopwatch, 
take your pulse for 60 seconds (1 minute). Repeat this 3 
times. Find the average pulse rate. Now, using your pulse, 
multiply your pulse per minute (say 100) × 60 minutes in 
an hour × 24 hours in a day × 365.25 days in a year × 78 
years in a lifetime. Your answer is 3.945 × 109. Take the log 
of this answer, and you get 109.596. he order of magnitude 
is 1010. Now let us repeat this but this time we will use the 
order of magnitude at each step: 

102 beats min-1 ×102 min h-1 × 101 h day-1 × 103 day yr-1 × 102 yr

he order of magnitude is 1010. Do the same calculations 
using your own pulse rate. Note that the two uncertain 
values here are pulse rate and lifespan. herefore, you are 
only giving an estimate or indication. You are not giving 
an accurate value.

1.1.3 ratiOs OF Orders OF 
maGnitude

Ratios can also be expressed as diferences in order of 
magnitude. For example, the diameter of the hydrogen 
atom has an order of magnitude of 10-10 m and the 
diameter of a hydrogen nucleus is 10-15 m. herefore, 
the ratio of the diameter of a hydrogen atom to the 
diameter of a hydrogen nucleus is 10-10 ⁄ 10-15 = 105 or 
ive orders of magnitude.

he order of magnitude of quantities in the macroscopic 
world are also important when expressing uncertainty in a 
measurement. his is covered in section 1.2 of this chapter.

 Exercise 1.1

1. he order of magnitude of 4 200 000 is:

A. 104

B. 105

C. 106

D. 107

2. Give the order of magnitude of the following 
quantities

(a) 20 000
(b) 2.6 × 104

(c) 3.9 × 107

(d) 7.4 × 1015

(e) 2.8 × 10-24 
(f) 4.2 × 10-30

3. Give the order of magnitude of the following 
measurements.

(a) he mean radius of the Earth, 6 370 000 m
(b) he half-life of a radioactive isotope 0.0015 s.
(c) he mass of Jupiter  

1 870 000 000 000 000 000 000 000 000 kg. 
(d) he average distance of the moon from the 

earth is 380 000 000 m.
(e) he wavelength of red light 0.000 000 7 m.

4 he ratio of the diameter of the nucleus to the 
diameter of the atom is approximately equal to

A. 10–15

B. 10–8

C. 10–5

D. 10–2

5. What is the order of magnitude of:

(a) the time in seconds in a year.
(b) the time for the moon to revolve around the 

earth in seconds.
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6. A sample of a radioactive element contains 6.02 × 
1023 atoms. It is found that 3.5 × 1010 atoms decay 
in one day.

(a) Estimate the order of magnitude of the 
atoms that disintegrate in one second.

(b) What is the ratio of the original atoms 
to the atoms that remain ater one day in 
orders of magnitude?

1.1.4 estimates OF eVeryday 
quantities 

Many problems in physics and engineering require very 
precise numerical measurements or calculations. he 
number of signiicant digits in a quantity measured relect 
how precisely we know that quantity. When English 
and French engineers used their excavation machinery 
to dig the tunnel under the North Sea, they hoped that 
they would meet at a common point. he laser guidance 
systems used allowed for a good degree of precision in the 
digging process. High precision is also required in cancer 
radiotherapy so that the cancerous cells are killed and 
the good body cells are not damaged in amounts greater 
than necessary. Also to our amazement and sadness we 
have witnessed too oten on television the accuracy of 
laser guided missiles seeking out targets with incredible 
accuracy.

However, in other applications estimation may be 
acceptable in order to grasp the signiicance of a physical 
phenomenon. For example, if we wanted to estimate the 
water needed to lush the toilet in your dwelling in a year, 
it would be reasonable to remove the lid of the toilet 
cistern (reservoir for storing water) and seeing whether 
there are graduations (or indicators) of the water capacity 
given on the inside on the cistern. When I removed the lid 
from my cistern, the water was at the 9 L (9 dm3) mark and 
when I did a “water saving” lush, the water went to the 6 
L mark. A long lush emptied the cistern. Now let’s assume 
there are three people in the house who are using one long 
lush and ive short lushes a day. his makes a total of  
(3 × 9 dm3) + (15 × 3 dm3) = 72 dm3 per day or an estimate 
of 102 dm3 per day. here are 365.25 days in a year or an 
estimate of 103 (using the order of magnitude) days. So 
the water used by this family would be 2.6 × 104 dm3 per 
year or an estimate of 105 dm3. Neither answer is accurate 
because both answers are only rough estimates.

With practice and experience, we will get a feel for 
reasonable estimates of everyday quantities. Unfortunately, 
students and teachers can be poor users of calculators. We 
should be able to estimate approximate values of everyday 

quantities to the nearest order of magnitude to one or two 
signiicant digits. We need to develop a way to estimate an 
answer to a reasonable value. 

Suppose we wanted to estimate the answer to: 

16 × 5280 × 12 × 12 ×12 

his can be estimated as: 
= (2 × 101) × (5 × 103) × (5 × 103) × (1 × 101) × (1 × 101) × (1 × 101)

= 250 × 1010

= 2.5 × 1012

he calculator answer is 1.1562 × 1012. So our estimate 
gives a reasonable order of magnitude.

 Exercise 1.2

1. A rough estimate of the volume of your body in 
cm3 would be closest to

A. 2 × 103 
B. 2 × 105 
C. 5 × 103 
D. 5 × 105

2. Estimate the

(a) dimensions of this textbook in cm
(b) mass of an apple in g 
(c) period of a heartbeat in s
(d) temperature of a typical room in oC

3. Estimate the answer to:

(a) 16 × 5280 × 5280 × 5280 × 12 × 12 × 12
(b) 3728 ×(470165 × 10-14) ÷ 278146 ×(0.000713 × 10-5)
(c) 47816 × (4293 × 10-4) ÷ 403000

4. he universe is considered to have begun with the 
“Big Bang” event. he galaxies that have moved 
the farthest are those with the greatest initial 
speeds. It is believed that these speeds have been 
constant in time. If a galaxy 3 × 1021 km away is 
receding from us at 1.5 × 1011 km y -1, calculate the 
age of the universe in years.
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Some quantities cannot be measured in a simpler form, 
and others are chosen for convenience. hey have been 
selected as the basic quantities and are termed fundamental 
quantities. Figure 102 lists the fundamental quantities of 
the SI system together with their respective SI unit and SI 
symbol.

Quantity SI unit SI symbol

length metre m
mass kilogram kg
time second s
electric current ampere A
thermodynamic 
temperature

Kelvin K

amount of substance mole mol
luminous intensity candela cd

Figure 102 Fundamental quantities

Scientists and engineers need to be able to make accurate 
measurements so that they can exchange information. To 
be useful, a standard of measurement must be:

1. Invariant in time. For example, a standard of 
length that keeps changing would be useless.

2. Readily accessible so that it can be easily 
compared.

3. Reproducible so that people all over the world can 
check their instruments.

he standard metre, in 1960, was deined as the length 
equal to 1 650 763.73 wavelengths of a particular orange–
red line of krypton–86 undergoing electrical discharge. 
Since 1983 the metre has been deined in terms of the 
speed of light. he current deinition states that ‘the metre 
is the length of path travelled by light in a vacuum during 
a time interval of 1⁄299 792 453 second’.

he standard kilogram is the mass of a particular piece 
of platinum-iridium alloy that is kept in Sèvres, France. 
Copies of this prototype are sent periodically to Sèvres 
for adjustments. he standard second is the time for  
9 192 631 770 vibrations of the cesium-133 atom.

Standards are commonly based upon properties of atoms. 
It is for this reason that the standard kilogram could be 
replaced at some future date. When measuring lengths, 
we choose an instrument that is appropriate to the order 
of magnitude, the nature of the length, and the sensitivity 
required. For example, the orders of magnitude (the 
factor of 10) of the radius of a gold atom, a person’s height 
and the radius of the solar system are 10-15, 100 and 1012 

5.  Give an estimate of the order of magnitude of the 
following:

(a) he length of your arm in mm.
(b) he quantity of milk you drink in a year in 

cm3.
(c) he mass of your backpack that contains 

your school materials in g.
(d) he diameter of a human hair in mm.
(e) he time you spend at school in a year in 

minutes.
(f) he number of people in the country 

where you live.

1.2  measurement & 
uncertainties

THE SI SYSTEM OF FUNDAMENTAL AND

DERIVED UNITS

1.2.1 State the fundamental units in the SI

 system.

1.2.2 Distinguish between fundamental and

 derived units and give examples of 

 derived units.

1.2.3 Convert between different units of

 quantities.

1.2.4 State units in the accepted SI format. 

1.2.5 State values in scientific notation and in

 multiples of units with appropriate prefixes.
© IBO 2007

1.2.1 Fundamental units

SI units are those of Le Système International d’Unités 
adopted in 1960 by the Conférence Générale des Poids 
et Mesures. hey are adopted in all countries for science 
research and education. hey are also used for general 
measurement in most countries with the USA and the 
UK being the major exceptions.

Physics is the most fundamental of the sciences in 
that it involves the process of comparing the physical 
properties of what is being measured against reference 
or fundamental quantities, and expressing the answer in 
numbers and units.
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respectively. he nature of a person’s height is diferent 
from that of the radius of a gold atom in that the person’s 
height is macroscopic (visible to the naked eye) and can be 
measured with say a metre stick, whereas the diameter of 
the atom is microscopic and can be inferred from electron 
difraction.

1.2.2 Fundamental and deriVed 
units 

When a quantity involves the measurement of two or more 
fundamental quantities it is called a derived quantity, and 
the units of these derived quantities are called derived 
units. Some examples include acceleration (m s-2), angular 
acceleration (rad s-2) and momentum (kg m s-1or N s). It 
should be noted that the litre (L) and the millilitre (mL) 
are oten used for measuring the volume of liquid or the 
capacity of a container. he litre is a derived unit but not a 
SI unit. he equivalent SI unit is dm3. 

Some derived units are relatively complex and contain a 
number of fundamental units. Figure 103 lists the common 
relevant derived units and associated information. 

1.2.3 cOnVersiOn between 
diFFerent units

Sometimes, it is possible to express the units in diferent 
derived units. his concept will become clear as the various 
topics are introduced throughout the course. For example, 
the unit of momentum can be kg m s-1 or N s. 

he unit of electrical energy could be J or W h or kJ or 
kWh (kilowatt-hour). In atomic and nuclear physics the 
unit of energy could be J or eV (electron–volt) where 1 eV 
= 1.6 × 10-19 J. 

1.2.4 units in accePted si FOrmat
Note the use of the accepted SI format. For example, the 
unit for acceleration is written as m s–2 and not m/s/s. No 
mathematical denominators are used but rather inverse 
numerators are the preferred option.

1.2.5 scientiFic nOtatiOn and 
PreFixes

Scientists tend to use scientiic notation when stating 
a measurement rather than writing lots of igures.  
1.2 × 106 is easier to write and has more signiicance than 
1 200 000. In order to minimise confusion and ambiguity, 
all quantities are best written as a value between one and 
ten multiplied by a power of ten.

For example, we have that, 

0.06 kg = 6 × 10-2 kg

140 kg = 1.4 × 102 kg or 1.40 × 102 kg depending on the 
signiicance of the zero in 140. 

132.97 kg = 1.3297 × 102 kg

he terms standard notation and standard form are 
synonymous with scientiic notation. he use of preixes 

Physical 

Quantity
Symbol

Name and Symbol

SI Unit

Fundamental

Units Involved

Derived Units 

involved

frequency
force
work

energy

f or ν 
F
W

Q, Ep, Ek, Eelas

hertz (Hz)
newton (N)

joule (J)
joule (J)

s-1

kg m s-2

kg m2 s-2

kg m2 s-2

s-1

kg m s-2

Nm
Nm

power
pressure

P
P

watt (W)
pascal (Pa)

kg m2 s-3

kg m-1 s-2

J s-1

N m-2

charge
potential
diference
resistance

Q
V

R

coulomb (C)
volt (V)

ohm (Ω)

A s
kg m2  s-3 A-1

kg m2  s-3 A-2

A s
J C-1

V A-1

magnetic ield
intensity

magnetic lux

B

Φ

tesla (T)

weber (Wb)

kgs-3 A-1

kg m2 s-2 A-2

NA-1 m-1

T m2

activity
absorbed dose

A
W/m

becquerel (Bq)
gray (Gy)

s-1

m2 s-2

s-1

J kg-1

Figure 103 Derived Units
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for units is also preferred in the SI system – multiple or 
submultiple units for large or small quantities respectively. 
he preix is combined with the unit name. he main 
preixes are related to the SI units by powers of three. 

However, some other multiples are used. 

1 000 000 000 m  = 1 Gm

1 000 000 dm3  = 1 Mdm3

0.000 000 001 s  = 1 ns

0.000 001 m   = 1 µm

he main preixes and other preixes are shown in Figure 104.

Multiple Preix Symbol Multiple Preix Symbol

1024 yotta Y 10-1 deci d
1021 zetta Z 10-2 centi c 
1018 exa E 10-3 milli m
1015 peta P 10-6 micro μ
1012 tera T 10 -9 nano n
109 giga G 10 -12 pico p
106 mega M 10-15 femto f
103 kilo k 10-18 atto a
102 hecto h 10-21 zepto z
101 deca da 10-24 yocto y

Figure 104 Preferred and some common prefixes

 Exercise 1.3

1. Which of the following isotopes is associated with 
the standard measurement of time?

A. uranium–235
B. krypton–86
C. cesium–133
D. carbon–12

2. Which one of the following lists a fundamental 
unit followed by a derived unit?

A. ampere mole
B. coulomb watt
C. ampere joule
D. second kilogram

3. Which one of the following is a fundamental unit?

A. Kelvin
B. Ohm
C. Volt
D. Newton

4. Which of the following is measured in 
fundamental units?

A. velocity
B. electric charge
C. electric current
D. force

5. he density in g cm-3 of a sphere with a radius of  
3 cm and a mass of 0.54 kg is:

A. 2 g cm-3  B. 2.0 × 101 g cm-3

C. 0.50 g cm-3  D. 5.0 g cm-3

6. Convert the following to fundamental S.I. units.

(a) 5.6 g  (b)  3.5 μ A 
(c) 3.2 dm  (d) 6.3 nm 
(e) 2.25 tonnes  (f) 440 Hz

7.  Convert the following to S.I. units

(a) 2.24 MJ  (b) 2.50 kPa 
(c) 2.7 km h-1  (d) 2.5 mm2

(e) 2.4 L  (f) 3.6 cm3

(g) 230.1 M dm3 (h)  3.62 mm3

8.  Estimate the order of magnitude for the following:

(a) your height in metres
(b) the mass of a 250 tonne aeroplane in 

kilograms
(c) the diameter of a hair in metres
(d) human life span in seconds.

9. Calculate the distance in metres travelled by a 
parachute moving at a constant speed of 6 km h-1 
in 4 min.

10. he force of attraction F in newtons between the 
earth with mass M and the moon with mass m 
separated by a distance r in metres from their 
centres of mass is given by the following equation:

 F = G M m r-2
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 where G is a constant called the Universal 
Gravitation constant 

 Determine the correct SI units of G.

11. Determine the SI units for viscosity η if the 
equation for the force on a sphere moving through 
a luid is:

 F = 6πηrv

 where r is the radius of the sphere, v is the speed of 
the sphere in the luid.

UNCERTAINTY AND ERROR IN MEASUREMENT

1.2.6 Describe and give examples of random 

 and systematic errors.

1.2.7 Distinguish between precision and 

 accuracy.

1.2.8 Explain how the effects of random errors 

 may be reduced.

1.2.9 Calculate quantities and results of 

 calculations to the appropriate number of 

 significant figures.
© IBO 2007

1.2.6 randOm and systematic 
errOrs

Errors can be divided into two main classes,random errors 

and systematic errors.

Mistakes on the part of the individual such as:

misreading scales.
poor arithmetic and computational skills.
wrongly transferring raw data to the inal report.
using the wrong theory and equations.

are deinite sources of error but they are not considered as 
experimental errors.

•
•
•
•

A systematic error causes a random set of measurements 
to be spread about a value rather than being spread about 
the accepted value. It is a system or instrument error. 
Systematic errors can result from:

badly made instruments.
poorly calibrated instruments.
an instrument having a zero error, a form of 
calibration.
poorly timed actions. 
instrument parallax error.

Many ammeters and voltmeters have a means of adjustment 
to remove zero ofset error. When you click a stop-watch, 
your reaction time for clicking at the start and the inish of 
the measurement interval is a systematic error. he timing 
instrument and you are part of the system.

Systematic errors can be eliminated or corrected before 
the investigation is carried out on most occasions.

Random uncertainties are due to variations in the 
performance of the instrument and the operator. Even when 
systematic errors have been allowed for, there exists error. 
Random uncertainties can be caused by such things as:

• vibrations and air convection currents in mass 
readings.

• temperature variations.
• misreadings.
• variations in the thickness of a surface being 

measured (thickness of a wire).
• not collecting enough data.
• using a less sensitive instrument when a more 

sensitive instrument is available.
• human parallax error (one has to view the scale of 

the meter in direct line, and not to the sides of the 
scale in order to minimise parallax error).

1.2.7 PrecisiOn and accuracy

As well as obtaining a series of measurements with the 
correct units for the measurements, an indication of 
the experimental error or degree of uncertainty in the 
measurements and the solution is required. he higher 
the accuracy and precision in carrying out investigations, 
the lower the degree of uncertainty. he meanings of 
the words accuracy and precision are clearly deined in 
scientiic ields.

Accuracy is an indication of how close a measurement is to 
the accepted value indicated by the relative or percentage 

•
•
•

•
•
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error in the measurement. An accurate experiment has a 
low systematic error.

Precision is an indication of the agreement among a 
number of measurements made in the same way indicated 
by the absolute error. A precise experiment has a low 
random error.

Suppose a technician was ine-tuning a computer monitor 
by aiming an electron gun at a pixel in the screen as shown 
in Figure 105.

1

2

3

4

screen

pixel

low accuracy
low precision

low accuracy
high precision

high accuracy
high precision

high accuracy
low precision

Figure 105 Precision and accuracy

In case 1 there is low accuracy and precision. he technician 
needs to adjust the collimator to reduce the scattering of 
electrons, and to change the magnetic ield so the electrons 
hit the pixel target. In case 2, the electron gun has been 
adjusted to increase precision but the magnetic ield still 
needs adjustment. In case 3, both adjustments have been 
made. Can you give an explanation for case four? 

1.2.8 reducinG randOm errOr

Oten the random uncertainty is not revealed until a 
large sample of measurements is taken. So taking a 
required number of readings/samples not only reveals 
random uncertainty but also helps to reduce it. Consistent 
experimental procedures can minimise random 
uncertainty. 

Random errors can also be reduced by choosing an 
instrument that has a higher degree of accuracy. When 
measuring mass, it would be best to choose a digital 
balance that can read to 2 decimal points rather than a top 
pan balance or a digital balance that can read to 1 decimal 
point. Further reduction of random error can be obtained 
by reducing variations such as air currents, vibrations, 
temperature variation, loss of heat to the surroundings.

However, you should be aware that repeating 
measurements may reduce the random uncertainty but at 
the same time the systematic error will not be reduced.

1.2.9 siGniFicant FiGures

he concept of signiicant igures may be used to indicate 
the degree of accuracy or precision in a measurement. 
Signiicant igures (sf) are those digits that are known with 
certainty followed by the irst digit which is uncertain.

Suppose you want to ind the volume of a lead cube. You 
could measure the length l of the side of a lead cube with 
a vernier caliper (refer Figure 112). Suppose this length 
was 1.76 cm and the volume l cm3 from your calculator 
reads 5.451776. he measurement 1.76 cm was to three 
signiicant igures so the answer can only be to three 
signiicant igures. So that the volume = 5.45 cm3.

he following rules are applied in this book.

1. All non-zero digits are signiicant. (22.2 has 3 sf)

2.  All zeros between two non-zero digits are signiicant. 
(1007 has 4 sf)

3.  For numbers less than one, zeros directly ater the 
decimal point are not signiicant. (0.0024 has 2 sf)

4.  A zero to the right of a decimal and following a 
non-zero digit is signiicant. (0.0500 has 3 sf)

5.  All other zeros are not signiicant. (500 has 1 sf)

 Scientiic notation allows you to give a zero 
signiicance. 

 For example, 10 has 1 sf but 1.00 x 101 has 3sf.

6.  When adding and subtracting a series of 
measurements, the least accurate place value in the 
answer can only be stated to the same number of 
signiicant igures as the measurement of the series 
with the least number of decimal places.

 For example, if you add 24.2 g and 0.51 g and 
7.134 g, your answer is 31.844 g which has increased 
in signiicant digits. he least accurate place value 
in the series of measurements is 24.2 g with only 
one number to the right of the decimal point. So 
the answer can only be expressed to 3sf. herefore, 
the answer is 31.8 g or 3.18 × 101 g.
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7.  When multiplying and dividing a series of 
measurements, the number of signiicant igures in 
the answer should be equal to the least number of 
signiicant igures in any of the data of the series.

 For example, if you multiply 3.22 cm by 12.34 cm by 
1.8 cm to ind the volume of a piece of wood your 
initial answer is 71.52264 cm3. However, the least 
signiicant measurement is 1.8 cm with 2 sf. herefore, 
the correct answer is 72 cm3 or 7.2 × 101 cm3.

8.  When rounding of a number, if the digit following 
the required rounding of digit is 4 or less, you 
maintain the last reportable digit and if it is six 
or more you increase the last reportable digit by 
one. If it is a ive followed by more digits except 
an immediate zero, increase the last reportable 
digit. If there is only a ive with no digits following, 
increase reportable odd digits by one and maintain 
reportable even digits.

 For example if you are asked to round of the 
following numbers to two signiicant numbers

 6.42  becomes  6.4
 6.46  becomes  6.5
 6.451  becomes  6.5
 6.498  becomes  6.5
 6.55  becomes  6.6
 6.45  becomes  6.4

As a general rule, round of in the inal step of a series of 
calculations.

 Exercise 1.4

1. Consider the following measured quantities  
(a) 3.00 ± 0.05 m (b) 12.0 ± 0.3 m

 Which alternative is the best when the accuracy 
and precision for a and b are compared?

a b

A. Low accuracy Low precision

B. Low accuracy High precision

C. High accuracy Low precision

D. High accuracy High precision

2. A voltmeter has a zero ofset error of 1.2 V. his 
fault will afect:

A. neither the precision nor the accuracy of 
the readings.

B. only the precision of the readings.
C. only the accuracy of the readings.
D. both the precision and the accuracy of the 

readings.

3. A student measures the current in a resistor as 655 
mA for a potential diference of 2.0 V. A calculator 
shows the resistance of the resistor to be 1.310 Ω. 
Which one of the following gives the resistance to 
an appropriate number of signiicant igures?

A. 1.3 Ω
B. 1.31 Ω
C. 1.310 Ω
D. 1 Ω

4. How many signiicant igures are indicated by each 
of the following 

(a) 1247  (b) 1007 
(c) 0.034   (d) 1.20 × 107

(e) 62.0  (f) 0.0025 
(g) 0.00250  (h)  sin 45.2°
(i) tan -1 0.24  (j) 3.2 × 10-16

(k)  0.0300  (l) 1.0 × 101

5. Express the following in standard notation 
(scientiic notation)

(a) 1250 (b) 30007
(c) 25.10 (d) an area of 4 km2 in m2 
(e) an object of 12.0 nm2 in m2 

6. Calculate the area of a square with a side of 3.2 m.

7. Add the following lengths of 2.35 cm and 7.62 m 
and 14.2 m.

8. Calculate the volume of a rectangular block 1.52 cm 
by 103.4 cm by 3.1 cm.

9. A metal has a mass of 2.0 g and a volume of 
0.01 cm3. Calculate the density of the metal in 
g cm-3.
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10. Round of the following to three signiicant igures:

(a) 7.1249  (b) 2561 
(c) 2001  (d) 21256
(e) 6.5647

11. Determine the following to the correct number of 
signiicant igures:

(a) (3.74 – 1.3) × 2.12 × 17.65 
(b) (2.9 + 3.2 + 7.1) ÷ 0.134

12.  Add 2.76 × 10 -6 cm and 3.4 × 10-5 cm.

UNCERTAINTIES IN CALCULATED RESULTS

1.2.10 State uncertainties as absolute, fractional 

 and percentage uncertainties.

1.2.11 Determine the uncertainties in results.
© IBO 2007

1.2.10 absOlute, FractiOnal and 
PercentaGe uncertainties

he limit of reading of a measurement is equal to the 
smallest graduation of the scale of an instrument.

he maximum degree of uncertainty of a measurement is 
equal to half the limit of reading.

When a measuring device is used, more oten than not 
the measurement falls between two graduations on the 
scale being used. In Figure 108, the length of the block is 
between 0.4 cm and 0.5 cm. 

0.1 0.2 0.3 0.4 0.5 cm

object

part

Figure 108 Linear measurement

he limit of reading is 0.05 cm and the uncertainty of the 
measurement is ± 0.025 cm.

he length is stated as 0.47 ± 0.02 cm. (Uncertainties are 
given to 1 signiicant igure).

he smallest uncertainty possible with any measuring 
device is half the limit of reading. However, most 
investigations generate an uncertainty greater than 
this. Figure 109 lists the uncertainty of some common 
laboratory equipment.

Metre rule ± 0.05 cm
Vernier calipers ± 0.005 cm
Micrometer screw gauge ± 0.005 mm
50 cm3 measuring cylinder ± 0.2 cm3

10 cm3 measuring cylinder ± 0.1 cm3

Electric balance ± 0.005 g
Watch second hand ± 0.5 s
Digital timer ± 0.0005 s
Spring balance (0–20N) ± 0.1 N
Resistor ± 2%

Figure 109 Equipment uncertainties

Absolute uncertainty is the size of an error and its units. 
In most cases it is not the same as the maximum degree of 
uncertainty (as in the previous example) because it can be 
larger than half the limit of reading. he experimenter can 
determine the absolute error to be diferent to half the limit 
of reading provided some justiication can be given. For 
example, mercury and alcohol thermometers are quite oten 
not as accurate as the maximum absolute uncertainty.

Fractional (relative) uncertainty equals the absolute 
uncertainty divided by the measurement as follows. It has 
no units.

Relative uncertainty =   
absolute uncertainty

  _________________  measurement  

Percentage uncertainty is the relative uncertainty 
multiplied by 100 to produce a percentage as follows

Percentage discrepancy = relative uncertainty × 100%

For example, if a measurement is written as 9.8 ± 0.2 m, 
then there is a

limit of reading = 0.1 m
uncertainty = 0.05 m
absolute uncertainty = 0.2 m
relative uncertainty = 0.2 ⁄ 9.8 = 0.02
and percentage uncertainty = 0.02 × 100% = 2%

Percentage uncertainty should not be confused with 
percentage discrepancy or percentage diference which 
is an indication of how much your experimental answer 
varies from the known accepted value of a quantity. 

•
•
•
•
•
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Percentage discrepancy is oten used in the conclusion of 
laboratory reports.

=   
accepted value – experimental value

   _____________________________  
 accepted value

   × 100

Note that errors are stated to only one signiicant igure

1.2.11 uncertainties in results 
determinatiOn

1. the arithmetic mean - aVeraGinG

When a series of readings are taken for a measurement, 
then the arithmetic mean of the readings is taken as 
the most probable answer, and the greatest deviation or 
residual from the mean is taken as the absolute error.

Study the following data in Table 110 for the thickness of a 
copper wire as measured with a micrometer screw gauge:

Reading/mm 5.821 5.825 5.820 5.832 5.826 5.826 5.828 5.824

Residual/mm –0.004 0 –0.005 +0.007 +0.001 +0.001 +0.003 –0.001

Figure 110 Sample measurements

he sum of the readings = 46.602 and so the mean of the 
readings is 5.825.

hen, the value for the thickness is 5.825 ± 0.007 mm

his method can be used to suggest an approprite uncertainty 
range for trigonometric functions. Alternatively, the mean, 
maximum and minimum values can be calculated to suggest 
an approprite uncertainty range. For example, if an angle is 
measured as 30 ±2 0, then the mean value of sin 30 = 0.5, the 
maximum value is sin 32 = 0.53 and the minimum value is 
sin 28 = 0.47. he answer with correct uncertainty range is 
0.5 ± 0.03. 

2.  additiOn, subtractiOn and 
multiPlicatiOn inVOlVinG errOrs

When adding measurements, the error in the sum is the 
sum of of the absolute error in each measurement taken.

For example, the sum of 2.6 ± 0.5 cm and 2.8 ± 0.5 cm is 
5.4 ± 1 cm 

When subtracting measurements, add the absolute errors.

If you place two metre rulers on top of each other to 
measure your height, remember that the total error is 
the sum of the uncertainty of each metre rule. (0.05 cm + 
0.05 cm). If there is a zero ofset error on an instrument, 
say a newton balance, you will have to subtract the given 
reading from the zero error value. 

So 25 ± 2.5 N  –  2 ± 2.5 equals 23 ± 5N.

3. multiPlicatiOn and diVisiOn 
inVOlVinG errOrs

When multiplying and dividing, add the relative or 
percentage errors of the measurements being multiplied/
divided. he absolute error is then the fraction or 
percentage of the most probable answer.

 Example

What is the product of 2.6 ± 0.5 cm and 2.8 ± 0.5 cm?

 Solution

First, we determine the product 

2.6 cm × 2.8 cm = 7.28 cm2 

Relative error 1  = 0.5 ⁄ 2.6 = 0.192
Relative error 2  = 0.5 ⁄ 2.8 = 0.179
Sum of the 
relative errors = 0.371 or 3.71%
Absolute error  = 0.371 x 7.28 cm2 or 3.71% x 7.28 cm2 
 = 2.70 cm2

Errors are expressed to one signiicant igure = 3 cm2 
he product is equal to 7.3 ± 3 cm2 

4. uncertainties and POwers

When raising to the nth power, multiply the percentage 
uncertainty by n, and when extracting the nth root , divide 
the percentage uncertainty by n.

For example, if the length x of a cube is 2.5 ±0.1cm, then 
the volume will be given by x3 = 15.625 cm3. he percentage 
uncertainty in the volume = 3(0.1⁄2.5 x 100) = 12%.

herefore, 12% of 15.625 = 1.875.
Volume of the cube   = 16 ± 2 cm3.
If x = 9.0 ± 0.3 m, then √x = x1⁄2 = 3.0 ± 0.15 m 
 = 3.0 ± 0.0.2 m.
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 Exercise 1.5

1. A student measures the mass m of a ball. he 
percentage uncertainty in the measurement of 
the mass is 5%. he student drops the ball from 
a height h of 100 m. he percentage uncertainty 
in the measurement of the height is 7%. he 
calculated value of the gravitational potential 
energy of the ball will have an uncertainty of  
(Ep = mgh)

A. 2%
B. 5%
C. 7%
D. 12%

2. he electrical power dissipation P in a resistor of 
resistance R when a current I is lowing through it 
is given by the expression

P = I2R.

 In an investigation, I was determined from 
measurements of P and R. he uncertainties in P 
and in R are as shown below.

P ± 4 %
R ± 10 %

 he uncertainty in I would have been most likely

A. 14 %.
B. 7 %.
C. 6 %.
D. 5 %.

3. he mass of the Earth is stated as 5.98 × 1024 kg. 
he absolute uncertainty is

A. 0.005
B. 0.005 kg
C. 0.005 × 1024 kg
D. 0.005 × 1024 

4. If a = 20 ± 0.5 m and b = 5 ± 1 m, then 2a – b 
should be stated as

A. 35 ± 1.5 m
B. 35 ± 2 m
C. 35 ± 0.0 m
D. 5 ± 2 m

5. measurinG lenGth with Vernier 
caliPers Or a micrOmeter screw 
GauGe

Two length measuring devices with lower uncertainty than 
the metre rule are vernier calipers and the micrometer 
screw gauge. he uncertainty of these instruments was 
given in Figure 109.

0 1 2 3

0

45

40

anvil

spindle

sphere main scale reading vernier scale

D

Figure 111 A micrometer screw gauge

In Figure 111, the reading on the micrometer screw gauge 
is 3.45 mm. You can see that the thimble (on the right of 
the guage) is to the right of the 3 mm mark but you cannot 
see the 3.5 mm mark on the main scale. he vernier 
thimble scale is close to the 45 mark.

cm
0 1 2 3 4

0 10

Figure 112 Vernier calipers

In Figure 112, the reading on the vernier calipers is 
1.95 cm. he vertical line showing zero on the vernier scale 
lies between 1.9 cm and 2.0 cm. he vertical graduation on 
the vernier scale that matches the main scale best is the 
ith graduation.
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5. How should a calculation result be stated if it is 
found to be 0.931940 µm with an absolute error of 
± 0.0005 µm.

6. his question concerns the micrometer screw 
gauge in the Figure shown below. 

0 1

30

35

40

mm

wire

(a) What is the reading and error on the 
micrometer?

(b) he thickness of the wire being measured 
varies over its length. What sort of error 
would this be?

7. A student records the following currents in 
amperes A when the potential diference V across 
a resistor is 12V:

 0.9 A 0.9 A 0.85 A 0.8 A 1.2 A 0.75 A
 0.8 A 0.7 A 0.8 A 0.95 A

(a) Would you disregard any of the readings? 
Justify your answer.

(b) Calculate the current and its uncertainty

8. A spring balance reads 0.5 N when it is not being 
used. If the needle reads 9.5 N when masses are 
attached to it, then what would be the correct 
reading to record (with uncertainty)?

9. Five measurements of the length of a piece of 
string were recorded in metres as:

  1.48      1.46 1.47 1.50 1.45

 Record a feasible length of the string with its 
uncertainty.

10. A metal cube has a side length of 3.00 ± 0.01 cm. 
Calculate the volume of the cube.

11. An iron cube has sides 10.3 ± 0.2 cm, and a mass 
of 1.3 ± 0.2 g.  
What is the density of the cube in g cm -3?

12. he energy E of an α–particle is 4.20 ± 0.03 MeV. 
How should the value and uncertainty of E -1⁄2 be 
stated?

13. Suggest an appropriate answer with uncertainty 
range for sin θ if θ = 60 ±50.

UNCERTAINTIES IN GRAPHS

1.2.12 Identify uncertainties as error bars in

 graphs.

1.2.13 State random uncertainty as an

 uncertainty range (±) and represent it

 graphically as an “error bar”.

1.2.14 Determine the uncertainties in the slope

 and intercepts of a straight-line graph.
© IBO 2007

1.2.12 uncertainties as errOr bars

When an answer is expressed as a value with uncertainty 
such as 2.3 ± 0.1 m, then the uncertainty range is evident. 
he value lies between 2.4 (2.3 + 0.1) and 2.2 (2.3 – 0.1) 
cm. In Physics, we oten determine the relationship that 
exists between variables. To view the relationship, we can 
perform an investigation and plot a graph of the dependant 
variable (y–axis) against the independant variable (x–axis). 
his aspect will be discussed fully in section 1.6.1.

Consider a spring that has various weights attached to 
it. As a heavier weight is attached to a spring, the spring 
extends further from its equilibrium position. Figure 115 
shows some possible values for this weight/extension 
investigation.

Force ± 5 N 100 150 200 250 300
Extension ± 0.2 cm 3.0 4.4 6.2 7.5 9.1

Figure 115 Extension of a spring

When a graph of force versus extension is plotted, the line 
of best it does not pass through every point. An error bar 
can be used to give an indication of the uncertainty range 
for each point as shown in Figure 116. 

In the vertical direction, we draw a line up and down 
for each point to show the uncertainty range of the force 
value. hen we place a small horizontal marker line on the 
extreme uncertainty boundary for the point. 
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In the horizontal direction, we draw a line let and right for 
each point to show the uncertainty range of the extension 
value. hen we place a small vertical marker line on the 
extreme uncertainty boundary for the point.

+5 N

–5 N

+0.2 cm–0.2 cm

Figure 116 Error Bars

When all the points in Figure 115 are plotted on a graph, 
then the line of best it with the appropriate error bars is 
shown in Figure 117. You can see that the line of best it 
lies within the error bar uncertainty range. he line of best 
it is interpolated between the plotted points. he line of 
best it is extrapolated outside the plotted points.

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

200

150

100

50

250

300

F
o

rc
e

/N

Extension /cm

Interpolation

Extrapolation

Figure 117 Example Of Error Bars

Error bars will not be expected for trigonometric or 
logarithmic functions in this course.

1.2.13,14

 randOm uncertainty 
and uncertainties in the 
slOPe and intercePts OF a 
straiGht–line GraPh

Graphs are very useful for analysing the data that is collected 
during investigations and is one of the most valuable tools 
used by physicists and physics students because

(a) they give a visual display of the relationship that 
exists between two or more variables.

(b) they show which data points obey the relationship 
and which do not.

(c) they give an indication of the point at which a 
particular relationship ceases to be  true.

(d) they can be used to determine the constants in an 
equation relating two variable quantities.

Some of these features are shown in the graphs of Figure 
118. Notice how two variables can be drawn on the same 
axis as in Figure 118 (b).

velocity/ms
– 1

time /s

power/ W

time /s

temperature/°C(a) (b)

Figure 118 Examples of graphs

1. choice of axes
A variable is a quantity that varies when another quantity 
is changed. A variable can be an independent variable, a 
dependent variable or a controlled variable. During an 
experiment, an independent variable is altered while the 
dependent variable is measured. Controlled variables 
are the other variables that may be present but are kept 
constant. For example, when measuring the extension of 
a spring when diferent masses are added to it, the weight 
force is altered and the extension from the spring’s original 
length is measured. he force would be the independent 
variable plotted on the x-axis and the extension would be 
the dependant variable plotted on the y-axis. (he extension 
depends on the mass added). Possible controlled variables 
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would be using the same spring, the same measuring 
device and the same temperature control. 

he values of the independent variable are plotted on 
the x-axis (the abscissa), and the values of the dependent 
variable are plotted on the y-axis (the ordinate), as shown 
in Figure 119.

y–axis

x–axis

(dependent variable)

1st quadrant

4th quadrant

2nd quadrant

3rd quadrant

(independent
variable)

Figure 119 Use of axes

It is not always clear which variable is the dependent and 
which is the independent. When time is involved it is 
the independent variable. In many electrodynamic and 
electromagnetic experiments the potential diference 
(voltage) or the current can be varied to see what happens 
to the other variable – either could be the independent 
variable. Most experimental results will be plotted in the 
irst quadrant. However, they can extend over the four 
quadrants as is the case with aspects of simple harmonic 
motion and waves, alternating current and the cathode ray 
oscilloscope to name a few.

When you are asked to plot a graph of displacement 
against time or to plot a graph of force versus time, the 
variable irst mentioned is plotted on the y-axis. herefore 
displacement and force would be plotted on the y-axis in 
the two given examples.

hese days, graphs are quickly generated with graphic 
calculators and computer sotware. his is ine for quickly 
viewing the relationship being investigated. However, 
the graph is usually small and does not contain all the 
information that is required, such as error bars. Generally, 
a graph should be plotted on a piece of 1 or 2 mm graph 
paper and the scale chosen should use the majority of the 
graph paper. In the beginning of the course, it is good 
practice to plot some graphs manually. As the course 
progresses, sotware packages that allow for good graphing 
should be explored.

2. scales
In order to convey the desired information, the size of the 
graph should be large, and this usually means making the 
graph ill as much of the graph paper as possible. Choose 
a convenient scale that is easily subdivided.

3. labels
Each axes is labelled with the name and/or symbols of the 
quantity plotted and the relevant unit used. For example, 
you could write current/A or current (A). he graph can 
also be given a descriptive title such as ‘graph showing the 
relationship between the pressure of a gas and its volume 
at constant temperature”.

4. Plotting the points
Points are plotted with a ine pencil cross or as a circled 
dot. In many cases, error bars are required. hese are 
short lines drawn from the plotted points parallel to the 
axes indicating the absolute error of the measurement. A 
typical graph is shown in Figure 120.

current/ A

5

10

1.0 2.0 3.0

P
o
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i�
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V

Figure 120 An example of plotting points

5.  lines of best it
he line or curve of best it is called the line of best it. 
When choosing the line or curve of best it it is practical to 
use a transparent ruler. Position the ruler until it lies along 
the ideal line. Shapes and curves can be purchased to help 
you draw curves. he line or curve does not have to pass 
through every point. Do not assume that the line should 
pass through the origin as lines with an x-intercept or 
y- intercept are common. 
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b
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m = 
rise
run

Figure 121 A graph showing the error range 

Normally, the line of best it should lie within the error 
range of the plotted points as shown in Figure 118. he 
uncertainty in the slope and intercepts can be obtained 
by drawing the maximum and minimum lines passing 
through the error bars. he line of best it should lie 
in between these two lines. he uncertainty in the  
y-intercept can be determined as being the diference 
in potential diference between the best it line and the 
maximum/minimum lines. he uncertainty in the slope 
can be obtained using the same procedure. However, do 
not forget that you are dividing. You will therefore have to 
add the percentage errors to ind the inal uncertainty.

In the graph, the top plotted point appears to be a data 
point that could be discarded as a mistake or a random 
uncertainty. 

area under a straiGht 
line GraPh

he area under a straight line graph is a useful tool in 
Physics. Consider the two graphs of Figure 122.

fo
rc

e/
 N

displacement/ m
2

10

8

10

sp
ee

d
/ 

m
s

–1
time/ s

(a)                                                              (b)

Figure 122 The area under a graph

Two equations that you will become familiar with in 
Chapter 2 are:

work (J) = force (N) × displacement (m)

distance (m) = speed (m s -1) × time (s)

In these examples, the area under the straight line 
(Figure 1.22(a)) will give the values for the work done  
(5N x 2m = 10 J).

In Figure 1.22(b), the area enclosed by the triangle will 
give the distance travelled in the irst eight seconds  
(i.e., ½ × 8 s × 10 m s-1 = 40 m).

GraPhical analysis 
and determinatiOn OF 
relatiOnshiPs

straiGht–line equatiOn

he ‘straight line’ graph is easy to recognise and analyse. 
Oten the relationships being investigated will irst 
produce a parabola, a hyperbola or an exponential growth 
or decay curve. hese can be transformed to a straight line 
relationship (as we will see later).

rise

run
b

y

x

Figure 123 A Staight Line Graph 

he general equation for a straight line is 

y = mx + c

where y is the dependent variable, x is the independent 
variable, m is the slope or gradient given by

vertical run

horizontal run
---------------------------------

yΔ
xΔ------=

and b is the point where the line intersects the y-axis.
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In short, an ‘uphill’ slope is positive and a ‘downhill’ slope 
is negative. he value of m has units. 

Consider Figure 124 below. he slope of the graph shown 
can be determined. Note that only a small portion of the 
line of best it is used.
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Figure 124 Determining the slope of the graph

m = rise/run =   
∆y

 ___ ∆x
   =   5.0 – 7.5 _______ 2.3 – 1.1           = –2.08 V A-1

he equation for the graph shown is generally given as 

V = ε – Ir or V = -Ir + ε 

Because V and I are variables, then m = -r and b = ε.

If T = 2 π√(l/g) where T and l are the variables, and 2π 
and g are constants, then T plotted against l will not give a 
straight-line relationship. But if a plot of T against √l 

or T 2 against l is plotted, it will yield a straight line. hese 
graphs are shown in below.

(i) T vs l (ii) T vs √ l  (iii) T2 vs l

T T

l ll

T2

Figure 125 Some different relationships  

standard GraPhs

1. linear
he linear graph shows that y is directly proportional to x 

y

x

k
rise

run
--------=

i.e., y α x or y = k x where k is the constant of 
proportionality.

2. Parabola
he parabola shows that y is directly proportional to 
x2. hat is, y α x2 or y = k x2 where k is the constant of 
proportionality.

y

x
2

y

x

In the equation s = u t + ½ a t2 , where, 

 s = displacement in m 
 u = initial velocity in m s–1 
 a = acceleration in m s–2 
 t = time in s

then, s α t2, k = ½ a ⁄ m s-2 and u = y–intercept

3. hyperbola
he hyperbola shows that y is inversely proportional to x 
or y is directly proportional to the reciprocal of x. 

i.e., y α 1 ⁄ x  or xy = k
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y

1

x
---

y

x

An example of an inverse proportionality is found in 
relating pressure, P, and volume, V, of a ixed mass of gas 
at constant temperature 

 P α   1 __ 
V

   ⇒ P =   k __ 
V

  

or PV = k (= constant)

F F

d
1

d
2

-----

An inverse square law graph is also a hyperbola. he force 
F between electric charges at diferent distances d is given 
by: 

F=
k q1q2

r2

A graph of F versus d has a hyperbolic shape, and a graph 
of F versus 1 ⁄ d 2  is a straight line.

4. sinusoidal
A sinusoidal graph is a graph that has the shape of a sine 
curve and its mathematics is unique. It can be expressed 
using degrees or radians. 

he wavelength λ is the length of each complete wave in 
metres and the amplitude A is the maximum displacement 
from the x-axis. In the top sinusoidal graph the wavelength 
is equal to 5m and the amplitude is equal to 2m. 

he frequency f of each wave is the number of waves 
occurring in a second measured in hertz (Hz) or s–1. he 
period T is the time for one complete wave. In the bottom 
sinusoidal wave, the frequency is 5 Hz, and the period is 
0.2 s.

1         2        3          4         5         6         7         8         9        10 length / m

λ

λ = wavelength

Sinusoidal Graph

         0.1                  0.2                 0.3                  0.4                0.5   time / s

A

A = amplitude

2
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he equations for these graphs will be explored in Chapter 
4 when you will study oscillations and simple harmonic 
motion.

lOGarithmic FunctiOns (ahl)

exponential and logarithmic 

graphs
If the rate of change of a quantity over time depends on the 
original amount of matter, the rate of change may well be 
exponential. Certain elements undergo exponential decay 
when they decay radioactively. When bacteria reproduce, the 
change of bacteria over time is given by an exponential growth.

Consider a sample of a material with an original number 
of atoms N0 that undergo radioactive decay as shown in 
Figure 131. It can be shown that the number of atoms N 
let to decay ater a period of time t is given by

N = N0e
-kt

From the logarithmic equations given in Appendix 1, it 
can be shown that

lnN = - kt + lnN0

herefore when lnN is plotted against time the slope of the 
straight line produced is equal to –k.

N
0

N

time / s

ln N

ln N
0

time / s

slope = – k

Figure 131 Logarithmic Graphs
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Now let us examine a logarithmic function. In 
thermodynamics, the pressure p versus volume V curve 
for an adiabatic change at constant temperature is given 
by the equation

pVγ = k   (where γ and k are constants)

If we take the log of both sides then the equation will be
log p + γ log V = log k

Now if the equation is rearranged into the straight line for 
y = mx + b, we get

log p = - γ log V + log k

If a graph of log p versus log V is plotted, a straight line 
is obtained with the gradient being equal to γ and the y-
intercept being equal to log k.

 Exercise 1.6

1. It can be shown that the pressure of a ixed 
mass of gas at constant temperature is inversely 
proportional to the volume of the gas. If a graph of 
pressure versus volume was plotted, the shape of 
the graph would be

A. a straight line
B. a parabola
C. an exponential graph
D. a hyperbola

2. Newton showed that a force of attraction F of two 
masses m and M separated by a distance d was 
given by F α Mm ⁄ d 2. If m and M are constant, a 
graph of F versus d -2 would have which shape?

A. a parabola
B. a straight line
C. a hyperbola
D. an exponential shape

3. he resistance of a coil of wire R
θ
 increases as the 

temperature θ is increased. he resistance R
θ
 at a 

temperature can be expressed as R
θ
 = R0  

(1 + µθ) where µ is the temperature coeicient of 
resistance. Given the following data , plot a graph 
that will allow you to determine R0 and µ.

R
θ / Ω 23.8 25.3 26.5 28.1 29.7 31.7

θ / °C 15 30 45 60 80 100

4. Given that s = ½ gt2 where s is the distance 
travelled by a falling object in time t, and g is a 
constant. he following data is provided:

s (m) 5.0 20 45 80
T2 (s2) 1.0 4.0 9.0 16

 Plot a relevant graph in order to determine the 
value of the constant g.

(ahl)

5. It can be shown that V =   RE ______  ( R + r )    where E and r are 
constants.

 In order to obtain a straight line graph, one would 
plot a graph of

A.  1 __ 
V

    against R  

B. V against R 

C.   1 __ 
V

    against  1 __ 
R

    

D.  V against  1 __ 
R

    

6. he magnetic force F between 2 magnets and their 
distance of separation d are related by the equation 
F = kdn where n and k are constants.

(a) What graph would you plot to determine 
the values of the two constants? 

(b) From the graph how could you determine n 
and k?

7. he intensity I of a laser beam passing through a 
cancer growth decreases exponentially with the 
thickness x of the cancer tissue according to the 
equation I = I0 e –μ x, where I0 is the intensity before 
absorption and µ is a constant for cancer tissue.

 What graph would you draw to determine the 
values of I0 and µ?

uncertainties in GraPhs 
(extensiOn)

Students must be able to determine the uncertainties in 
the slope and intercepts of a straight line graph. In order 
to cover this skill, it is best to use an example.
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 Example

he schematic diagram in Figure 134 demonstrates 
an experiment to determine Planck’s Constant. he 
wavelength (λ) of light from the light source incident 
on a metal photoemissive plate of a photoelectric cell is 
varied, and the stopping voltage Vs applied across the 
photoelectric cell is measured.

+ –

A

V

Switches to allow
reversal of current

Vacuum tube

Light source

variable source
of voltage

Figure 134 Determining Planck’s Constant

he following values were obtained for diferent light 
radiation colours

Light Radiation

Colour 

Stopping Voltage Vs 

±0.05 V 
λ

± 0.3 × 10-7

Red 1.20 6.1

Orange 1.40 5.5

Yellow 1.55 5.2

Green 1.88 4.6

Blue 2.15 4.2

Violet 2.50 3.8

Figure 135  Data For Planck’s Constant

It can be shown that for this experiment hc ⁄ λ = h f  
= Φ + eVs where h is Planck’s Constant

c is the speed of light constant 3 x 108 m s-1 

λ is the wavelength in m and f is the frequency in Hz

Φ is the work function.

e is the charge on an electron (1.6 × 10-19C)

(a) Copy Figure 135, add 2 more columns and 
complete the frequency and the uncertainties 
columns for each colour of light radiation in the 
table.

Because the wavelength is given to two signiicant igures, 
the frequency can only be given to two signiicant igures.

For division, to ind the frequency from hc ⁄ λ , the relative 
uncertainty in the frequency has to be calculated for each 
wavelength. For example, for dark red:

the relative uncertainty = 0.3 × 10-7 ÷ 6.1 × 10-7 = 0.0492 

the absolute uncertainty = 0.0492 × 1.6 × 1014 

= ± 0.07 × 1014 Hz

In this case, the absolute uncertainty is not half the limit 
of reading as the absolute uncertainty of the wavelength 
was given as ± 0.3 × 10-7 m. Remember that the minimum 
possible absolute uncertainty is half the limit of reading 
which would be ± 0.05 × 10-7m. 

Light 

Radiation

Colour 

Stopping 

Voltage Vs 

   ±0.05 V 

λ
± 0.3 × 10-7m

Frequency       

  × 1014 Hz

Uncertainty

± 1014 Hz

Red 1.20 6.1 1.6 0.07
Orange 1.40 5.5 1.8 0.09
Yellow 1.55 5.2 1.9 0.1
Green 1.88 4.6 2.2 0.1
Blue 2.15 4.2 2.4 0.2
Violet 2.50 3.8 2.6 0.2

Figure 136 Data showing uncertainties

(b) Plot a fully labelled graph graph paper with 
stopping voltage on the vertical axis against the 
reciprocal of the wavelength on the horizontal 
axis. Allow for a possible negative y–intercept.

Now can you put in the error bars for each point and label 
the axis. here will be a negative y–intercept.

Mark in the gradient and the y–intercept.

he required graph is shown in Figure 137. Note the 
maximum and minimum lines and the line of best it , the 
gradient of the straight line of best it and the value of the 
negative y–intercept.
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1

2

3

1.0 2.0 1
λ
--- 10 6m 1–×

Stopping Voltage
         /Vs

Figure 137 Data for Planck’s Constant

(c) Calculate Planck’s Constant by graphical means 
and compare your value with the theoretical value 
of 6.63 x 10-34 J s.

he equation given at the start of this example was: 

hc ⁄ λ = h f = Φ + eV
S

If we rearrange this equation in the form y = mx + c, the 
equation becomes: 

V
S
 = h f ⁄ e – Φ ⁄ e

herefore, the gradient = h ⁄e = 2.07 V ⁄ 4.62 x 1014 s-1 

= 4.5 × 10-15 Vs 

h = gradient ⁄ e = 4.5 × 10-15 Vs × 1.6 × 10-19 C 

= 7.2 × 10-34 Js

he accepted value of Planck’s constant is 6.63 × 10-34 Js.

he percentage discrepancy = 7.2 – 6.63 ⁄ 6.63 × 100% 

= 8.6 % 

(d) Determine the minimum frequency of the 
photoelectric cell by graphical means.

he threshold frequency is the x-intercept 

= 2.2 ± 0.6 × 1014 Hz

(e) From the graph, calculate the work function of the 
photoemissive surface in the photoelectric cell in 
joules and electron-volts.

he y–intercept is equal to – Φ ⁄ e 

Work function, Φ = e × (y-intercept) = 1.6 × 10-19 C × -1 V 
= 1.6 × 10-19 J

 Exercise  1.7

1. An investigation was undertaken to determine the 
relationship between the length of a pendulum l 
and the time taken for the pendulum to oscillate 
twenty times. he time it takes to complete one 
swing back and forth is called the period T. It can 
be shown that 

 T = 2π √
__

   l _ g    

 where g is the acceleration due to gravity.

 he data in the table below was obtained.

(a) Copy the table and complete the period 
column for the measurements. Be sure to 
give the uncertainty and the units of T.

(b) Calculate the various values for T2 
including its units.

(c) Determine the absolute error of T2 for each 
value.

(d) Draw a graph of T2 against l. Make sure that 
you choose an appropriate scale to use as 
much of a piece of graph paper as possible. 
Label the axes, put a heading on the graph, 
and use error bars. Draw the curve of best 
it.

(e) What is the relationship that exists between 
T2 and l?

(f) Are there any outliers?
(g) From the graph determine a value for g.

Length of pendulum ± 0.05 m Time for 20 oscillations ± 0.2 s Period T  T2 Absolute error of  T2 

0.21 18.1
0.40 25.5
0.62 31.5
0.80 36.8
1.00 40.4
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When vectors are graphed, the system of coordinates is 
called a rectangular coordinate system or a Cartesian 
coordinate system, or simply, a coordinate plane. Vectors 
in the same plane are said to be co-planar.

1.3.2 the sum Or diFFerence OF 
twO VectOrs

addition of vectors

From simple arithmetic it is known that 4 cm + 5 cm = 9 cm 

However, in vector context, a diferent answer is possible 
when 4 and 5 are added.

For example, 4 cm north (N) + 5 cm south (S) = 1 cm south

Suppose you move the mouse of your computer 4 cm up 
your screen (N), and then 5 cm down the screen (S), you 
move the mouse a total distance of 9 cm. his does not 
give the inal position of the arrow moved by the mouse. 
In fact, the arrow is 1cm due south of its starting point, and 
this is its displacement from its original position. he irst 
statement adds scalar quantities and the second statement 
adds two vector quantities to give the resultant vector R.

he addition of vectors which have the same or opposite 
directions can be done quite easily:

 1 N east + 3 N east = 4 N east (newton force)

 200 µm north + 500 µm south = 300 µm south 
(micrometre)

 300 m s -1 north-east + 400 m s-1 south-west =  
100 m s-1 south west (velocity)

he addition of co-planar vectors that do not have the 
same or opposite directions can be solved by using scale 
drawings or by calculation using Pythagoras’ theorem and 
trigonometry.

Vectors can be denoted by boldtype, with an arrow above 
the letter, or a tilde, i.e., a, a

→
 or a

~
  respectively. hey are 

represented by a straight line segment with an arrow at 
the end. hey are added by placing the tail of one to the 
tip of the irst (placing the arrow head of one to the tail 
of the other). he resultant vector is then the third side 
of the triangle and the arrowhead points in the direction 
from the ‘free’ tail to the ‘free’ tip. his method of adding is 
called the triangle of vectors (see Figure 140).

1.3.1 Distinguish between vector and scalar 

 quantities, and give examples of each.

1.3.2 Determine the sum or difference of two 

 vectors by a graphical method.

1.3.3 Resolve vectors into perpendicular 

 components along chosen axes.
© IBO 2007

1.3.1 VectOrs and scalars - 
examPles

Scalars are quantities that can be completely described 
by a magnitude (size). Scalar quantities can be added 
algebraically. hey are expressed as a positive or negative 
number and a unit. Some scalar quantities, such as mass, 
are always positive, whereas others, such as electric charge, 
can be positive or negative. Figure 139 lists some examples 
of scalar and vector quantities.

Scalars Vectors

distance (s) displacement (s)
speed velocity (v)
mass (m) area (A)
time (t) acceleration (a)
volume (V) momentum (p)
temperature (T) force (F)
charge (Q) torque (τ)
density (ρ) angular momentum (L)
pressure (P) lux density(Φ)
energy (E) electric ield intensity (E)
power (P) magnetic ield intensity (B)

Figure 139 Examples of scalar and vector quantities

Vectors are quantities that need both magnitude and 
direction to describe them. he magnitude of the vector is 
always positive. In this textbook, vectors will be represented 
in heavy print. However, they can also be represented by 
underlined symbols or symbols with an arrow above or 
below the symbol. Because vectors have both magnitude 
and direction, they must be added, subtracted and 
multiplied in a special way.

he basic mathematics of vector analysis will be outlined 
hereunder, and no mention will be made of i, j and k unit 
vectors.

1.3 VectOrs and scalars
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a b

R =a + b

a b

Tail

Head

+ =

Figure 140 Addition Of Vectors

he parallelogram of vectors rule for adding vectors can 
also be used. hat is, place the two vectors tail to tail 
and then complete a parallelogram, so that the diagonal 
starting where the two tails meet, becomes the resultant 
vector. his is shown in Figure 118.

a

b

R = a + b

Figure 141 Addition of vectors using parallelogram rule

If more than two co-planar vectors are to be added, place 
them all head to tail to form a polygon. Consider the three 
vectors, a, b and c shown in Figure 142. Adding the three 
vectors produces the result shown in Figure (b).

a b

c

a

b

c

R = a + b + c

(a) (b)

Figure 142 Addition of more than two vectors

Notice then that a + b + c = a + c + b = b + a + c = . . . hat 
is, vectors can be added in any order, the resultant vector 
remaining the same.

 Example

On an orienteering expedition, you walk 40 m due south 
and then 30 m due west. Determine how far and in what 
direction are you from your starting point.

 Solution

Method 1  By scale drawing

N

40 m

30 m

A

BC

37°

Figure 143 Orienteering

Draw a sketch of the two stages of your journey.

From the sketch make a scale drawing using 1 cm equal to 
10 m (1 cmþ: 10m). 

If you then draw the resultant AC, it should be 5 cm in 
length. Measure ∠CAB   with a protractor. 

he angle should be about 37°.

herefore, you are 50 m in a direction south 37° west from 
your starting point (i.e., S 37° W).

Method 2 By calculation

Using Phythagoras’ theorem, we have 

 AC 2  =  40 2  +  30 2  ∴ AC =  √
________

  40 2  +  30 2    = 50

 (taking the positive square root).

From the tan ratio, 

tanθ =   
opposite

 _______ 
adjacent

      we have   tanθ =   BC ___ 
AB

   =   30 ___ 40   = 0.75    

  ∴  tan –1  ( 0.75 )  = 36.9°

You are 50 m in a direction south 37° west from your 
starting point (i.e. S 37° W).
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subtraction of vectors
In Chapter 2, you will describe motion – kinematics. You 
will learn that change in velocity, Δv ,is equal to the inal 
velocity minus the initial velocity, v – u. Velocity is a vector 
quantity so Δv , v and u are vectors. To subtract v – u, you 
reverse the direction of u to obtain –u, and then you add 
vector v and vector –u to obtain the resultant Δ v.

hat is, Δ v = v + (–u). Vectors v and u are shown.  
For v – u, we reverse the direction of u and then add head 
to tail

v
u

(–u)

v
R = v + (–u)

= v – u

Figure 144 Subtraction of vectors

 Example

A snooker ball is cued and strikes the cushion of the 
snooker table with a velocity of 5.0 m s-1 at an angle of 
450 to the cushion. It then rebounds of the cushion with 
a velocity of 5.0 m s-1 at an angle of 450 to the cushion. 
Determine change in velocity? (Assume the collision is 
perfectly elastic with no loss in energy).

 Solution

You can solve this problem by scale drawing or calculation. 
Draw a sketch before solving the problem, then draw the 
correct vector diagram.

vi vf45°
45°

5 m/s 5 m/s

Notice that the lengths of the initial velocity vector ,

, and the �nal velocity vector , , are equal.vi vf

Vector diagram :

Using the vector diagram above we can now draw a vector 
diagram to show the change in velocity. 

vf

v– i( )

v∆ vf vi–=

(5.0 m s
–1

)

(5.0 m s
–1
)

(7.1 m s
–1

)

Using the same scale as that used for the 5.0 m s-1 velocity 
vector, the change in velocity is 7.1 m s-1 at right angles to 
the cushion.

We could also use Pythagoras’ theorem to determine the 
length (or magnitude) of the change in velocity vector, Δ v:

|Δv|2 = |v
f
|2 + |v

i
|2,

so that |Δv|2 = 52 + 52 = 50 ∴ |Δv|2 = √
__             

  50 ≈ 7.1 m s-1

multiplying vectors and scalars
Scalars are multiplied and divided in the normal algebraic 
manner, for example:

5m ÷ 2 s = 2.5 m s-1 2 kW × 3 h  = 6 kW h (kilowatt-hours)

A vector multiplied by a scalar gives a vector with the 
same direction as the vector and magnitude equal to the 
product of the scalar and the vector. 

For example: 3 × 15 N east = 45 N east; 

2kg x 15 m s-1 south = 30 kg m s-1 south

he vector analysis of a vector multiplied by a vector 
is not required for the syllabus. However, you will 
encounter these situations when you study work, energy 
and electromagnetism. Two points will be made in an 
oversimpliied manner:

1. Vectors can be multiplied to give a scalar answer. 

 For example, force can be multiplied by a 
displacement to give work which is a scalar. 
Finding the product in this manner is called the 
dot product, i.e., U • V = |U| |V| cos θ where θ is 
the angle between the directions of V and U.
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U Vθ

Figure 147 Multiplying vectors

2.  he product of two vectors can also give a vector 
answer. For example, the force exerted on a proton 
moving with a velocity in a magnetic ield is 
given by the equation F = qv × B where q is the 
charge in coulombs, v is the velocity in metres per 
second, and B is the magnetic ield strength in 
teslas. q is a scalar and v and B are vectors. 

 he answer F is a vector. Finding the product in 
this manner is called the cross product, V × U.

 he magnitude of the cross product, V × U is 
given by |V × U| = |U| |V| sin θ

he direction of of the answer, V × U is at right angles 
to both V and U and can be found by curling the ingers 
of your right hand in the direction of V so that they curl 
towards U when you bend them. Your thumb is then 
pointing in the required direction.

U

V

V U×

θ

Figure 148 Right Hand Rule

In the Figure 148, the direction of V x U is‘up’ the page.

 Exercise 1.8

1. Which of the following lines best represents the 
vector 175 km east (1 cm : 25 km)?

2. Which one of the following is a vector quantity?

A. Work
B. Speed
C. Acceleration
D. Pressure

3. Which one of the following is a scalar quantity?

A. Force
B. Velocity
C. Momentum
D. Energy

4. he diagram below shows a boat crossing a river 
with a velocity of 4 m s-1 north. he current lows 
at 3 m s–1 west.

4ms-1
current3ms-1

 he resultant magnitude of the velocity of the boat 
will be

A. 3 m s-1

B. 4 m s-1

C. 5 m s-1

D. 7 m s-1

5.  Two vectors with displacements of 10 m north–
west and 10 m north–east are added. he direction 
of the resultant vector is

A. south B. north-east
C. north D. north-west

6. Add the following vectors by the graphical method

(a) 4 m south and 8 m north,
(b) 5m north and 12 m west,
(c) 6.0 N west and 6.0 N north,
(d) 9.0 m s-1 north + 4.0 m s-1 east + 6.0 m s-1 south.

A.

B .

C.

D.
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7. Subtract the following vectors by either the 
graphical method or by calculation

(a) 2 m east from 5 m east (i.e., 5 m east – 2m 
east),

(b) 9 m s -2 north from 4 m s-2 south,
(c) 4.0 N north from 3.0 N east,
(d)  3.2 T east from 5.1 T south.

8. Calculate the following products

(a)  20 m s-1 north by 3
(b) 12 by 5 N s north 12° east

9. If a cyclist travelling east at 40 m s–1 slows down to 
20 m s–1, what is the change in velocity?

10. Find the resultant of a vector of 5 m north 40° 
west added to a vector of 8 m east 35° north

1.3.3 resOlutiOn OF VectOrs

he process of inding the components of vectors is called 
resolving vectors. Just as two vectors can be added to give 
a resultant vector, a single vector can be split into two 
components or parts.

he vector 5m south has a vertical component of 5 m 
south and a zero horizontal component just as the vector 
10 N east has a zero vertical component and a horizontal 
component of 10 N east.

Suppose you have a vector that is at an angle to the 
horizontal direction. hen that vector consists of 
measurable horizontal and vertical components. In Figure 
151, the vector F is broken into its components. Note that 
the addition of the components gives the resultant F.

F

component

Horizontal component

F
y

x

Vertical

θ

θ

Figure 151 Resolution of vectors

From trigonometry

=

=

θsin
opposite

hypotenuse
--------------------------=

y

F
------

θcos
adjacent

hypotenuse
--------------------------=

x

F
------

and cos θ = adjacent ⁄ hypotenuse = x ⁄ F 

his means that the magnitude of the vertical component 
= y = Fsin θ

and the magnitude of the horizontal component   
= x = Fcos θ

 Example

A sky rocket is launched from the ground at an angle of 
61.00 with an initial velocity of 120 m s-1. Determine the 
components of this initial velocity?

 Solution

61°

Vector diagram:

120

61°

y

x

From the vector diagram we have that 

  = 104.954...

  =

and

61°sin
y

120
--------- y⇒ 120 61 °sin= =

1.05 10
2×

61cos ° x

120
--------- x⇒ 120 61 °cos= =

= 104.954...= 1.05 × 102 and 

 = 58.177...

 = 58.2

That is, the magnitude of the vertical component is 
1.1 × 102 m s-1 and the magnitude of the horizontal 
component is 58 m s-1.
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 Exercise 1.9

1. he vertical component of a vector of a 4.0 N force 
acting at 30° to the horizontal is

A. 4.3 N
B. 2 N
C. 4 N
D. 8.6 N

2. Calculate the horizontal component of a force of 
8.4 N acting at 60.0° to the horizontal.

3. Calculate the vertical and horizontal components 
of the velocity of a projectile that is launched 
with an initial velocity of 25.0 m s-1 at an angle of 
elevation of 65° to the ground.

4. Calculate the easterly component of a force of 15 
N south-east.

5. Calculate the vector whose components are 5.0 N 
vertically and 12 N horizontally.

6. Calculate F in the diagram below if the sum of all 
the forces in the is zero.

C

A B

D

F

AC = 2 N BC = 2 N and

ACD∠ 135°= BCD∠ 135°=

7. Calculate the acceleration of a small object down 
a frictionless plane that is inclined at 30.0° to the 
horizontal. Take the acceleration due to gravity g 
equal to 9.81 ms-2.

8. Calculate the resultant force of all the forces acting 
on a point object in the diagram below.

250
450

12 N

8.0 N

8.0 N

15 N
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aPPendix 1

mathematical 
requirements

During this course you should experience a range 
of mathematical techniques. You will be required to 
develop mathematical skills in the areas of arithmetic 
and computation, algebra, geometry and trigonometry, 
and graphical and vector analysis for both external and 
internal assessment. 

mathematical sentences

= is equal to
⁄ divided by or in units of
< is less than
> is greater than
∝ is proportional to
≈ is approximately equal to
∆x a small diference between two values of x
|x| the absolute value of x

GeOmetry

indices

1. 

2. 

3. 

4. 

5. 

lOGarithms

1. 

2. 

3. 

4. 

b

h

Area of any triangle =
1

2
---bh

Area of a circle = πr2

b
c

Surface area of a cuboid = 2(ab + bc + ac)

r

Volume of a sphere =   πr3

Surface area of a sphere = 4πr2

Area of a hollow cylinder = 2πh

Surface area of a cylinder = 2πr (h + r)

r

h

Volume of a cylinder = πr2h

a

r
Circumference = 2πr

4
3

,

a
x

a
y× a

x y+
=

a
x

a
y÷ a

x

a
y

----- a
x y–

= =

a
x( )

y
a

x y×
=

a
x

b
x× a b×( )x

=

a
0

1 1
x, 1 0

x, 0 x 0≠( )= = = ax a
1 x⁄

=

⇔

×( )

×

÷

( ) ×

× ×( )

, , ≠( ) ⁄

a
x

y x⇔ yalog= =

×( )

, x > 0, y > 0.

, x > 0, y > 0.

, y > 0.

×

÷

( ) ×

× ×( )

, , ≠( ) ⁄

a y x⇔ yalog= =

x ylog+log x y×( )log=

x ylog–log
x

y
--log=

x ylog y
x

log=
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triGOnOmetry

θ

a

b

c

A

B C

a

b

c

C

A

B

sinθ =   
opposite

 __________ 
hypotenuse

     =   a __ 
b

    

cosθ =   
adjacent

 __________ 
hypotenuse

    =   c __ 
b

      

tanθ =   
opposite

 _______ 
adjacent

     =   a __ c    

tanθ =   sinθ _____ 
 cosθ

  ,  cos θ ≠ 0

For very small angles, sin θ ≈ tan θ ≈ θ , cos θ ≈ 1

Sine rule:   a ____ sinA
   =   b ____ sinB

   =   c ____ sinC
    

Cosine rule: a2 = b2 + c2 - 2bc × cos A

Area of triangle: A =   1 __ 2  ab × sinC

Identities: 

A
2

A
2

cos+sin 1=

A B–( ) A B+( )sin+ 2nis A Bsinsin=

A Bsin+sin 2 A B+( ) 2⁄[ ] A B–( ) 2⁄[ ]cos×sin=

anGular measure

Angles are measured in radians. One radian is the angle 
subtended by an arc with length equal to the radius. If  
s = r, then θ = s⁄r.

Note then, that 2π rad = 360°, and 1 rad = 57.3°

 Exercise 1.10

1. Convert 13⁄17 to a decimal and to a percentage.

2. Use a calculator to ind 3.63 and log 120.

3. Make y the subject of the equation if x = 2y – 6.

4. Make v the subject of the equation given that  
F = mv2 ⁄ r 

5. Make g the subject of the equation given that  
T = 2π √ (l / g) 

6. Solve for x and y in the following simultaneous 
equations

2x + 4y = 18
x – y = –1

7. Calculate the following

(a) 162 + 163

(b) 251..5 
(c) (√ 2) 4 
(d) (√3) -2 

8. Evaluate the following

(a) log 464 
(b) log 10 0.01 

9. Find the circumference and area of a circle of 
radius 0.8 cm.

10. Calculate the volume and surface area of a sphere 
of radius 0.023 m.

11. How many radians are there in

A. 270°
B. 45°

12.  If sin 2θ = 1 then what is θ equal to? 
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Greek symbOls

he Greek alphabet is commonly used in Physics for various 
quantities and constants. he capital and small letters and 
their names are given here for your convenience:

Letters Name

A α alpha
B β beta
Γ γ gamma
∆ δ delta
E ε epsilon
Z ζ zeta
H η eta
Θ θ theta
I ι iota
K κ kappa
M µ mu
N ν nu
Ξ ξ xi
Ο ο omicron
Π π pi
P ρ rho
Σ σ sigma
T τ tau
Φ φ phi
X χ chi
Ψ ψ psi
Ω ω omega


