Circuits Activity: Series and Parallel (Pre-lab)

The simplest electrical circuit consists of a complete loop of conducting wire with a source of current and some "load". A load is any component that causes a reduction in the current, such as a resistor, light, or motor. If two of more loads exist in a circuit they may be arranged in two general fashions, series or parallel.

In a series arrangement the resistors are connected end-to-end, such that the charges moving in the loop must pass through all of the resistors. If the resistors are connected in parallel the charges have a "choice" as to which resistor they will pass through. Each charge can pass through only one of the resistors before returning to the voltage source.

Pre-Lab Questions:

- 1. Build a series and parallel circuit. Your instructor will check when done. Which one is called series? Parallel?
- 2. Judging by the bulb brightness, which circuit has the greater current?
- 3. Judging by the bulb brightness, which circuit has the greater resistance?
- 4. <u>Without changing anything else</u>, remove a bulb from each circuit. What happens to the other bulb?
- 5. Is the wiring in your house series or parallel? How do you know?

Circuits Activity: Series and Parallel

Build three series circuits with different resistors, and then build three parallel circuits. Complete the data table for each. Look for patterns.

0			444	
•	→ 1* 1	ies	ш І	

	V	I	R (Ohm's law)
\mathbf{R}_{1}			
\mathbf{R}_2			
Total			

Series #2:

ociics #2.			
	V	I	R (Ohm's law)
$\mathbf{R}_{\scriptscriptstyle{1}}$			
\mathbf{R}_2			
Total			

Series #3:

	V	I	R (Ohm's law)
R ₁			
\mathbf{R}_2			
\mathbf{R}_3			
Total			

Parallel #1:

1 0100101 11 10			
	V	I	R (Ohm's law)
$\mathbf{R}_{_{1}}$			
\mathbf{R}_2			
Total			

Parallel #2:

	V	I	R (Ohm's law)
$\mathbf{R}_{_{1}}$			
R_2			
Total			

Parallel #3:

	V	I	R (Ohm's law)
\mathbf{R}_{1}			
\mathbf{R}_2			
\mathbf{R}_3			
Total			

Conclusion: Please write a response to this lab using the following questions as guidelines.

- What does an ammeter measure? How is an ammeter connected to a circuit?
- What does a voltmeter measure? How is a voltmeter connected to a circuit?
- When you measure the "voltage" of a battery, are you measuring a voltage boost or a voltage drop? How about a resistor?
- What patterns do you see in your data for series circuits?
- What patterns do you see in your data for parallel circuits?
- What is equivalent resistance? Which circuit has a great equivalent resistance?