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Oscillations
In this section we will derive a mathematical model for an oscillating or vibrating 

body. There are many different examples of naturally occurring oscillations but 

they don’t all have the same type of motion. We are going to consider the simplest 

form of oscillation: simple harmonic motion. The most common example of 

this is a pendulum (Figure 4.1). Before we start to model this motion, we need to 

define some new terms and quantities.

4 Simple harmonic 
motion and waves

Assessment statements

4.1.1 Describe examples of oscillations.

4.1.2 Define the terms displacement, amplitude, frequency, period and 

phase difference.

4.1.3 Define simple harmonic motion (SHM) and state the defining equation 

as a  2x.

4.1.4 Solve problems using the defining equation for SHM.

4.1.5 Apply the equations v  v0  sin  t, v  v0  cos  t, v  √
_________

 (x0
2  x2)  ,  

x  x0  cos  t and x  x0  sin  t as solutions to the defining equation for 

SHM.

4.1.6 Solve problems, both graphically and by calculation, for acceleration, 

velocity and displacement during SHM.

Kinematics of simple harmonic 
motion

4.1

A swing is an example of oscillatory 

motion.

OA B

bob

string

Figure 4.1 The simple 

pendulum swings from A 

to B and back.
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Cycle

One cycle is defined as one complete oscillation of the pendulum (A–B–A). The 

term cycle is also used to describe circular motion; one cycle is one complete circle 

or 2  radians.

Equilibrium position

The equilibrium position is the position where the pendulum bob would rest if 

not disturbed – this is position O.

Amplitude ( x0)

The amplitude is defined as the maximum displacement from the equilibrium 

position, this is distance OB or OA.

Unit: metre

Time period ( T )

The time period is the time taken for one complete cycle.

Unit: second

Frequency (f  )

The frequency is the number of cycles that the pendulum makes per unit time. 

This is equal to 1/time period.

Unit: s 1 or hertz (Hz)

Angular frequency ( )

The angular frequency is found by multiplying f  by 2  ( 2 f   ). This quantity 

is normally used when describing circular motion. An angular frequency of  

2  rads  s 1  means that a body makes one revolution per second. However, it is 

also used to describe an oscillation, 2  being equivalent to one complete cycle.

Unit: s 1 or hertz (Hz)

Worked example 

A pendulum completes 10 swings in 8  s. What is the angular frequency? 

Solution

There are 10 swings in 8 seconds, so each swing takes 0.8  s.

Time period  0.8  s.

Frequency    
1

 __ 
T

      
1
 ___ 

0.8
    1.25  Hz

Angular frequency  2 f 2 1.25  7.8 rad  s 1 

Measuring time period

To reduce the uncertainties when 

measuring the time period of an 

oscillation, it is best to measure 

the time for many oscillations e.g. 

10. The time period is found by 

dividing this time by the number of 

oscillations.
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Analysing oscillations

To make a model of oscillatory motion, we will analyse two different oscillations 

and see if there are any similarities.

The pendulum

When a pendulum bob is pushed to one side and released, it will swing back down. 

The reason for this can be understood by drawing the forces acting on the bob. In 

Figure 4.2, we can see that when the string makes an angle to the vertical, the tension 

has a component in the horizontal direction; this component causes the bob to 

accelerate back towards the middle. As the bob swings down, the angle of the string 

gets smaller, and the horizontal component decreases. The horizontal acceleration of 

the bob is proportional to the horizontal force, so we can therefore deduce that the 

horizontal acceleration is proportional to the displacement from the lowest point.

When the ball reaches the lowest position, it is travelling at its maximum speed. 

It passes through this position and continues to swing up on the other side. The 

horizontal component of the tension is now acting in the other direction. This is 

in the opposite direction to the motion so will slow the bob down. We can conclude 

that no matter where the bob is, its acceleration is always directed towards O.

Mass on a spring

If a mass hanging on the end of a spring is lifted up and released, it will bounce up 

and down as in Figure 4.3. The forces acting on the mass are weight and the tension 

in the spring. The weight is always the same but the tension depends on how far the 

spring is stretched. (When you stretch a spring, the tension is proportional to the 

extension).

Figure 4.2 As the angle increases, 

the horizontal component of tension 

increases, but is always pointing 

towards the centre.

A

O

B

Figure 4.3 The tension increases as 

the spring is stretched. The resultant 

(red) increases with increased distance 

from the centre and is always directed 

towards the centre.
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At A, the spring is short, so the tension will be small; the weight will therefore be 

bigger than the tension, so the resultant force will be downwards.

As the mass passes through the middle point, the forces will be balanced.

At B, the spring is stretched, so the tension is large; the tension will therefore be 

greater than the weight, so the resultant force will be upwards.

Again we can see that the acceleration is proportional to the displacement from 

the central point and always directed towards it.

This type of motion is called simple harmonic motion or SHM.

Graphical treatment
To analyse the oscillation further, we can plot graphs for the motion. In this 

example, we will consider a mass on a spring, but we could choose any simple 

harmonic motion.

SHM

The acceleration is proportional to 

the distance from a fixed point.

The acceleration is always directed 

towards a fixed point.

Figure 4.5  You can plot a 

displacement time graph by attaching 

a pen to a pendulum and moving paper 

beneath it at a constant velocity.

1 State whether the following are examples of simple harmonic motion.

 Figure 4.4

(a) A ball rolling up and down on a track (Figure 4.4a).

(b) A cylindrical tube floating in water when pushed down and released (Figure 4.4b).

(c) A tennis ball bouncing back and forth across the net.

(d) A bouncing ball.

2 A pendulum completes 20 swings in 12  s. What is

 (a) the frequency?

 (b) the angular frequency?

Exercises

b)a)
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Displacement–time

As before, O is the equilibrium position and we will take this to be our position of 

zero displacement. Above this is positive displacement and below is negative.

At A, the mass has maximum positive displacement from O.

At O, the mass has zero displacement from O. 

At B, the mass has maximum negative displacement from O.

We can see that the shape of this displacement–time graph is a cosine curve.

0
time/s2 4 6O O O

A A A A

O

B
B B

2

displacement/cm

2

x0

x0

The equation of this line is x x0 cos t,

where x0 is the maximum displacement and  is the angular frequency.

Velocity–time

From the gradient of the displacement–time graph (Figure 4.6), we can calculate 

the velocity.

At A, gradient 0 so velocity is zero.

At O, gradient is negative and maximum, so velocity is down and maximum.

At B, gradient 0 so velocity is zero.

A
time

velocity

A

O A

O

B
O O

B B
v0

The equation of this line is v v0 sin t where v0 is the maximum velocity.

To see how the equation fits the 

graph we can put some numbers 

into the equation.

In this example, the time period  4  s

Therefore f    1 
_ 
4
    0.25  Hz

Angular frequency  2 f  0.5

So displacement  2  cos (0.5 t )

Calculating displacement at 

different times gives:

t 1s y 2 cos ( /2)  0  cm

t 2s y 2 cos ( )  2  cm

t 3s y 2 cos (3 /2) 0  cm

t 4s y 2 cos (2 )  2  cm

Figure 4.7 Velocity–time graph.

Figure 4.6 Displacement–time graph.
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Acceleration–time

From the gradient of the velocity–time graph (Figure 4.7) we can calculate the 

acceleration.

At A, the gradient is maximum and negative so acceleration is maximum and 

downwards.

At O, the gradient is zero so acceleration is zero.

At B, the gradient is maximum and positive so the acceleration is maximum and 

upwards.

time

acceleration

A A

A

O

B

O O O

B B

a0

a0

The equation of this line is a a 0 cos t where a 0 is this maximum acceleration.

So x x0 cos t and a a 0 cos t

When displacement increases, acceleration increases proportionally but in a 

negative sense; in other words: a  x

We have confirmed that the acceleration of the body is directly proportional to the 

displacement of the body and always directed towards a fixed point.

Worked example 

A mass on a spring is oscillating with a frequency 0.2  Hz and amplitude 3.0  cm. 

What is the displacement of the mass 10.66  s after it is released from the top? 

Solution

 x  x0 cos t.  Since this is SHM

 where x  displacement

 x0  amplitude  3  cm

  angular velocity  2 f  2 0.2

 0.4  Hz

 t  time  10.66  s

 x  0.03 cos (0.4 10.66)  Substituting into the formula

 x  0.02  m

  2  cm

3 For the same mass on a spring in the example above, calculate the displacement after 1.55  s.

4 Draw a displacement time sketch graph for this motion.

5 A long pendulum has time period 10  s. If the bob is displaced 2  m from the equilibrium position 

and released, how long will it take to move 1  m?

6 As a mass on a spring travels upwards through the equilibrium position, its velocity is 0.5  m  s 1.  

If the frequency of the pendulum is 1  Hz what will the velocity of the bob be after 0.5  s?

Exercises

Figure 4.8  Acceleration–time graph.

Radians

When calculating cos t, you must 

have your calculator set on radians.
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SHM and circular motion

If we analyse the motion of the ball in 

Figure 4.9, we find that it is also SHM. 

The ball is travelling in a circle of radius 

x  0 with a constant speed v. The ball takes 

a time T to complete one revolution.

Let us consider the horizontal 

component of motion. We can write 

equations for this component.

Displacement

x0

x0 sin 

x0 cos 

Velocity

x0

v

v

v sin 

v cos 

The horizontal velocity  v sin 

But for circular motion v r so in this case v x  0

So horizontal velocity  x  0 sin 

Acceleration

When bodies travel in a circle, they have an acceleration towards the centre (the 

centripetal acceleration) a 2r. In this case, acceleration is 2x0 since the radius 

is x  0.

a

a sin 

a cos 

Horizontal component of acceleration  a cos 

But a  2x  0

So horizontal acceleration  2 x  0 cos 

Now we have found that the displacement x  x  0 cos 

So acceleration  2x

So the horizontal acceleration is proportional to the displacement, and is always 

directed towards the centre. In other words, the horizontal component of the 

motion is SHM. We have also found out that the constant of proportionality is 2.

Now we have concluded that this motion is SHM we can use the equations that we 

have derived to model all simple harmonic motions.

Figure 4.12 Horizontal velocity 

vectors.

Speed, v    
distance

 _______ 
time

  

   
circumference

  ____________ 
time period

  

   
2 r

 ____ 
T

  

But    
2___ 
T 

    

So speed  r

Centripetal acceleration    v
2

 __ r  

   
2r2

 ____ r   

  2r

Figure 4.13 Horizontal acceleration 

vectors.

If you have done differentiation in 

maths then you will understand 

that if

displacement x  x0 cos t

then velocity   
dx

 __ 
dt

    x0  sin t

and acceleration,   
d2x

 ___ 
dt2

    x0
2 cos t

This implies that a  2x

This is a much shorter way of 

deriving this result!

Figure 4.9 A short time after the ball 

starts moving, the radius makes an 

angle  with the horizontal.

Figure 4.10 When 

a ball moving in 

a circle is viewed 

from the side, 

it looks like it is 

moving with SHM. 

Figure 4.11 From the triangle we can 

see that the horizontal displacement  

x  x0 cos . 

viewed from here

r
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Equations for SHM
Displacement  x0 cos t (1)

Velocity  x0 sin t (2)

Acceleration  2x0 cos t (3)

We also know that a 2x

From Pythagoras, 1 sin2  cos2 

So, sin     √
_________

 1  cos2 Rearranging

Therefore sin t    √
__________

 1  cos2 t   Substituting for   t

Multiplying by  gives x0 sin t  x0   √
__________

 1  cos2 t  

x 0 sin t  √
______________

  x0
2  x0

2 cos2 t   Taking x0 into the square root

But from equation (1) x0
2 cos2 t  x2

So v  √
_______

 x 0
2  x  2   Substituting

The maximum velocity is when the displacement is 0 so x  0

Maximum velocity  x

Worked example 

1 A pendulum is swinging with a frequency of 0.5  Hz. What is the size and 

direction of the acceleration when the pendulum has a displacement of 2  cm to 

the right?

2 A pendulum bob is swinging with SHM at a frequency of 1Hz and amplitude 

3  cm. At what position will the bob be moving with maximum velocity and 

what is the size of the velocity?

Solution

1 Assuming the pendulum is swinging with SHM, then we can use the equation  

a  2x to calculate the acceleration.

  2 f  2   0.5  

a  2  0.02  0.197  m  s 2  Since ve direction is to the left

2 v  √
_______

 x0
2  x2   Since the motion is SHM

This is maximum when x  0  This is when the pendulum swings through 

the central position

The maximum value  x0 where   2 f  2 1  2  rad  s 1 

Maximum v  2 0.03  0.188  m  s 1

Summary

If a body oscillating with SHM has 

an angular frequency 2 f and 

amplitude x0 then its displacement 

(x), velocity (v) and acceleration 

(a) at any given time can be found 

from the following equations:

x  x0 cos t

v  x0  sin t

a  2x0 cos t

In addition, at a given displacement 

x, the velocity and acceleration 

can be found from the following 

equations:

v  √
_______

 x0
2  x2  

Maximum velocity  x0

a  2x

The real pendulum

The pendulum is a classic example 

of SHM. However it is only SHM if 

the swings are very small (less than 

10°). This is worth remembering if 

you ever do an experiment with a 

real pendulum.

7 A long pendulum swings with a time period of 5  s and an amplitude of 2  m.

(a) What is the maximum velocity of the pendulum?

(b) What is the maximum acceleration of the pendulum?

8 A mass on a spring oscillates with amplitude 5  cm and frequency 2  Hz. The mass is released from 

its highest point. Calculate the velocity of the mass after it has travelled 1cm.

9 A body oscillates with SHM of time period 2  s. What is the amplitude of the oscillation if its 

velocity is 1  m  s 1 as it passes through the equilibrium position?

Exercises

Maximum velocity x

The maximum velocity is when the displacement is 0 so x  0

So v √x0
2 xxx2   Substituting

_______

But from equation (1) x0xx 2 cos2 t x2xx

x0 sin t √   x0xx 2 x0xx 2 cos     
2
    t       Taking x0xx  into the square root

______________

Multiplying by  gives x0xx  sin t x0xx √1  cos2 t
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If we once again consider the simple pendulum, we can see that its energy changes 

as it swings.

Kinetic energy

We have already shown that the velocity of the mass is given by the equation

v  √"
_______

 x0
2  x2  

From definition, KE    1 
_ 2  mv  2

Substituting: KE    1 
_ 2  m   2(x0

2  x  2)

KE is a maximum at the bottom of the swing where x  0.

So KE max    1 
_ 2  m 2x0

2

At this point the PE is zero.

Total energy

The total energy at any moment in time is given by:

total energy  KE  PE

So at the bottom of the swing:

total energy    1 
_ 2  m 2x 0

2  0    1 
_ 2  m 2x 0

2

Since no work is done on the system, according to the law of conservation of 

energy, the total energy must be constant.

So total energy    1 
_ 2  m 2x0

2

Potential energy

Potential energy at any moment  total energy  KE

So PE    1 
_ 2  m 2x0

2    1 
_ 2  m 2(x  0

2  x  2)

PE    1 
_ 2  m 2x2

Figure 4.14 In the simple pendulum, 

energy is changing from one form to 

another as it moves.

Energy changes during simple 
harmonic motion (SHM)

4.2

Assessment statements

4.2.1 Describe the interchange between kinetic energy and potential energy 

during SHM.

4.2.2 Apply the expression EK    1 _ 
2
  m 2(x0

2  x2) for the kinetic energy of a 

particle undergoing SHM, ET    1 _ 
2
  m 2x0

2 for the total energy and  

EP    1 _ 
2
  m 2x2 for the potential energy.

4.2.3 Solve problems, both graphically and by calculation, involving energy 

changes during SHM.

At the top of the

swing the mass

has maximum PE

and minimum KE.

At the bottom of

the swing the mass

has maximum KE

and minimum PE.

To view the PhET Masses and 

springs simulation, visit heinemann.

co.uk/hotlinks, enter the express 

code 4426P and click on Weblink 

4.1. 
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Solving problems graphically

Kinetic energy

From previous examples we know that the velocity, v  v0 sin t

So   1 
_ 2  mv  2    1 

_ 2  mv0
2 sin2 t

Potential energy

The graph of PE can be found from PE    1 
_ 2   m 2x2

Since x  x0 cos t

PE    1 
_ 2  m 2x0

2 cos2 t    1 
_ 2  mv0

2 cos2 t

Total energy

If these two graphs are added together it gives a constant value, the total energy. 

(This might remind you of Pythagoras: 1  cos2   sin2 .)

Figure 4.15  The graph of KE vs time is 

a sin2 curve.

Potential energy

The potential energy is a minimum 

when the bob is at its lowest point; 

we take this to be zero. At the top 

of the swing, the potential energy 

is a maximum value.

Figure 4.16  The graph of PE vs time is 

a cos2 curve.

Figure 4.17 Total energy vs time.

Total energy

If no energy is lost then the total 

energy is a constant value. When 

the bob is swinging, the energy 

continually changes between 

kinetic and potential.

The kinetic energy is a maximum 

when the bob is travelling fastest; 

this is at the bottom of the swing. 

At the top of the swing, the bob is 

stationary, so the KE is zero.

A
B A

AOB
B

O O O

time

max KE

KE

zero KE

A B A B

O O O

time

max PE

PE

zero PE

time

potential energy

kinetic energy
total energy
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Worked example 

1 A pendulum bob of mass 200  g is oscillating with amplitude 3  cm and 

frequency 0.5  Hz. How much KE will the bob have as it passes through the 

origin?

Solution

1 Since the bob has SHM, KEmax    1 
_ 2  m 2x0

2  

 where x0  0.03  m and   2 f  2 0.5  

 KEmax    1 
_ 2  0.2 2 (0.03)2  8.9 10 4 J

Damping
When deriving the equations for KE and PE, we assumed that no energy was lost. 

In real oscillating systems there is always friction and sometimes also air resistance. 

The system has to do work against these forces resulting in a loss of energy. This 

effect is called damping.

A car suspension system has 

many springs between the body 

and the wheels. Their purpose is 

to absorb shock caused by bumps 

in the road.

The car is therefore an oscillating 

system that would oscillate up 

and down every time the car 

went over a bump. As this would 

be rather unpleasant for the 

passengers, the oscillations are 

damped by dampers (wrongly 

known as shock absorbers).

Forced oscillations and resonance4.3

Assessment statements

4.3.1 State what is meant by damping.

4.3.2 Describe examples of damping.

4.3.3 State what is meant by natural frequency of vibration and forced 

oscillations.

4.3.4 Describe graphically the variation with forced frequency of the 

amplitude of vibration of an object close to its natural frequency of 

vibration.

4.3.5 State what is meant by resonance.

4.3.6 Describe examples of resonance where the effect is useful and where it 

should be avoided.

The suspension of a car. The damper is 

the red telescopic part.
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Light damping

If the opposing forces are small, the result is a gradual loss of total energy. This 

means that the amplitude of the motion gets slowly less with time. For example, 

a mass on a spring hanging in the air would have a little damping due to air 

resistance.

If the mass is suspended in water, the damping is greater, resulting in a more rapid 

loss of energy. 

Critical damping

Critical damping occurs if the resistive force is so big that the system returns to 

its equilibrium position without passing through it. This would be the case if the 

mass were suspended in a thicker liquid such as oil.

Figure 4.20  Reduction in amplitude 

due to critical damping.

Frequency of damped harmonic 

motion

You can see from the graph that 

the frequency does not change 

as the amplitude gets less. As the 

motion slows down, the distance 

travelled gets less, so the time for 

each cycle remains the same.

time

oil

displacement
equilibrium position

Figure 4.19  Reduction in amplitude 

due to heavier damping. 

time

water

displacement

Figure 4.18  Reduction in amplitude 

due to light damping.

time

displacement
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Resonance
In all of the previous examples, a system has been 

displaced and released, causing an oscillation. The 

frequency of this oscillation is called the natural 

frequency. If a system is forced to oscillate at a 

frequency other than the natural frequency, this is 

called a forced oscillation.

Resonance is an increase in amplitude that occurs when 

an oscillating system is forced to oscillate at its own 

natural frequency.

For example, when you hit a wine glass with your 

finger, it vibrates. If you sing at the same frequency, 

your voice can cause the wine glass to resonate. Sing 

loud enough and the wine glass will shatter (not many 

people can do this).

If a spring is pulled down and released, then it will oscillate at its own natural 

frequency. If the support is oscillated, then the system will be forced to vibrate at 

another frequency. If the driving frequency is the same as the natural frequency, 

then resonance occurs.

Resonance curve

A graph of the amplitude of oscillation against the driving frequency is called a 

resonance curve. The sharpness of the peak is affected by the amount of damping 

in the system.

It’s possible to shatter a wine glass if you 

sing at its natural frequency.

free oscillation forced oscillation resonance 

System driven at
frequency f
causes mass to

oscillate.

System driven at
frequency f0 causes
large amplitude
oscillation.

Mass oscillates at
frequency f0.

Figure 4.21 The effect of varying 

driving frequency.

The radio tuner

When you tune your radio, you 

are adjusting an electric circuit so 

that it resonates with the signal 

of a particular frequency. If the 

resonance curve for the circuit 

were not sharp, you would be able 

to tune into the station over a wide 

range of frequencies, and would be 

likely to get interference from other 

stations.

Figure 4.22 Graph of amplitude 

vs frequency for different levels of 

damping.

Curve with little damping

Curve with much damping

frequency

amplitude
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Phase
If we take two identical pendulum bobs, displace each bob to the right and release 

them at the same time, then each will have the same displacement at the same 

time. We say the oscillations are in phase. If one is pulled to the left and the other 

to the right, then they are out of phase.

This can be represented graphically:

displacement

A and B represent

motions that are

in phase.

B and C represent

motions that are

out of phase.

A

time

B

time

C

time

Phase difference

The phase difference is 

represented by an angle (usually 

in radians). We can see from 

the previous graphs that if two 

oscillations are completely out 

of phase then the graphs are 

displaced by an angle . We say 

the phase difference is .

Worked example 

A ball is sitting on a platform oscillating with amplitude 1 cm at a frequency of 

1  Hz. As the frequency is increased, the ball starts to lose contact with the platform. 

At what frequency does this take place?

Solution

The ball will lose contact when the acceleration of the platform is greater than 9.8  m  s 2.

Using the formula a 2x0 

     √
_______

 9.8/0.01    31.3 rads s 1 

 f    ___ 
2

  5 Hz

Figure 4.24 Displacement time 

graphs for bodies in and out of phase.

When juggling balls (or oranges) they 

go up and down at different times  

they are out of phase.

Riding a horse

When riding a horse it is important 

to stay in phase with the horse. 

If you are out of phase, then you 

will be coming down when the 

horse is going up, resulting in an 

uncomfortable experience. If the 

horse goes up and down too fast, 

then it can be very difficult to stay 

in phase. A mechanical horse is 

more difficult to ride; you can only 

accelerate downwards at 9.8  m  s 2, 

so if the horse accelerates down 

too fast then you can’t keep up 

with it.

Figure 4.23 The pendulum bobs are 

in phase when they swing together.

in phase out of phase
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Experimental measurement of oscillations
The frequency at which a child oscillates on a swing is low enough to measure using a 

stopwatch (although to be accurate, you should use some sort of marker, so you can 

easily judge when the child has made a complete cycle). Higher frequency oscillations 

are not possible to measure in this way but can be measured using electronic sensors. 

Here are some examples of how you could make those measurements.

Photo gate

A photo gate sends a signal to a computer each time something passes through 

it. If a vibrating object passes through the gate each cycle then the computer can 

calculate the time period of the oscillation.

The computer will record each time the string passes through the gate. The time 

period is the time between the first pass and the third pass. Depending on the 

software used, it may be possible for the computer to calculate and display the 

frequency.

Force sensor

When a pendulum swings, the tension in the string varies with time. A force 

sensor can be used to measure the tension, enabling you to plot a graph of tension 

vs time on the computer. The frequency is calculated from the graph.

With this method it is also possible to see the damping of the motion.

Position sensor

To measure an oscillation using a position sensor, the oscillating body must move 

backwards and forwards (or up and down) in front of the sensor. The sensor 

sends out a sound that is reflected off the object back to the sensor. By measuring 

the time taken for the sound to reflect back from the object, the computer can 

calculate the distance between the sensor and the object. This method has the 

advantage of not disturbing the motion, but the object must be big enough for the 

sensor to detect it.

time

force

force
sensor

Figure 4.26 The maximum force gets 

less as the amplitude gets less.

Figure 4.25 A photo gate is used to 

measure the time period of a vibrating 

elastic string.
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The word wave was originally used to describe the way that a water surface behaves 

when it is disturbed. We use the same model to explain sound, light and many 

other physical phenomena. This is because they have some similar properties to 

water waves, so let’s first examine the way water waves spread out.

If a stone is thrown into a pool of water, it disturbs the surface. The disturbance 

spreads out or propagates across the surface, and this disturbance is called a wave. 

Observing water waves, we can see that they have certain basic properties (in other 

words, they do certain things).

Reflection

If a water wave hits a wall, the waves reflect.

Wave characteristics4.4

Assessment statements

4.4.1 Describe a wave pulse and a continuous progressive (travelling) wave.

4.4.2 State that progressive (travelling) waves transfer energy.

4.4.3 Describe and give examples of transverse and of longitudinal waves.

4.4.4 Describe waves in two dimensions, including the concepts of 

wavefronts and of rays.

4.4.5 Describe the terms crest, trough, compression and rarefaction.

4.4.6 Define the terms displacement, amplitude, frequency, period, 

wavelength, wave speed and intensity.

4.4.7 Draw and explain displacement–time graphs and displacement – 

position graphs for transverse and for longitudinal waves.

4.4.8 Derive and apply the relationship between wave speed, wavelength 

and frequency.

4.4.9 State that all electromagnetic waves travel with the same speed in free 

space, and recall the orders of magnitude of the wavelengths of the 

principal radiations in the electromagnetic spectrum.

Sea waves reflect off a cliff.
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Refraction

When sea waves approach a beach, they change direction 

because of the difference in height of different parts of the sea 

floor. This causes the waves to bend.

Interference

When two waves cross each other, they can add together 

creating an extra big wave.

Diffraction

When water waves pass through a small opening, the waves 

spread out.

Anything that reflects, refracts, interferes and diffracts can also 

be called a wave.

One-dimensional waves
The next step is to derive a model for wave motion and use it to help us 

understand why waves behave in the way that they do. However, since water waves 

are two-dimensional, they are not the easiest waves to start with. We will begin by 

looking at two examples of one-dimensional waves: waves in a string and waves in 

a spring.

Wave pulse in a string

If a string held between two people is displaced (flicked), a disturbance can be seen 

to travel from one end to the other. This is called a wave pulse.

We can see that the pulse travels with a certain speed  this is called the wave 

speed.

Wave speed is the distance travelled by the wave profile per unit time.

Note: No part of the string actually moves in the direction of the wave velocity – 

in fact, each particle in the string moves at right angles to the direction of wave 

velocity.

Reflection of a wave pulse

If the pulse meets a fixed end (e.g. a wall), it exerts an upward force on the wall. 

The wall being pushed up, pushes back down on the string sending an inverted 

reflected pulse back along the string.

Waves change direction as they 

approach a beach.

Figure 4.27 A wave pulse. Pulse travels with speed v

Figure 4.28 A reflected pulse.

To view the PhET Waves on a string 

simulation, visit heinemann.co.uk/

hotlinks, enter the express code 

4426P and click on Weblink 4.2. 
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Interference of wave pulses

If two pulses are sent along a string from each end, they will cross each other in the 

middle of a string.

Transfer of energy

It can be seen that as the string is lifted up it is given PE. This PE is transferred 

along the string. A wave can therefore be thought of as a transfer of energy. There 

is in fact so much energy transferred by waves in the sea that they can be used to 

produce electricity.

Continuous waves in a string

wave direction

If the end of a string is moved up and down with simple harmonic motion of 

frequency f, a series of pulses moves along the string in the shape of a sine curve, as 

in Figure 4.30.
crest

trough
V

A

Transverse waves

direction of

disturbance

wave direction

A wave in a string is an example of a transverse wave. The direction of  

disturbance is perpendicular to the direction that the wave profile moves. 

Figure 4.30 The ‘sine shape’ or 

profile moves along the string with 

the wave speed.

Figure 4.32 Transverse wave

Figure 4.31 The quantities used 

to define a wave.

Since waves in a string do not 

spread out, they cannot diffract or 

refract. You would have to observe 

the 2D equivalent, waves in a 

rubber sheet, to see this.

Amplitude (A)

The maximum displacement of 

the string from the equilibrium 

position.

Wave speed (v)

The distance travelled by the wave 

profile per unit time.

Wavelength ( )

The distance between two 

consecutive crests or any two 

consecutive points that are in phase.

Frequency (f   )

The number of complete cycles 

that pass a point per unit time.

Period (T)

Time taken for one complete wave 

to pass a fixed point (T  1/f)

Phase

The phase is a quantity that tells us 

whether parts of a wave go up and 

down at the same time or not.

Figure 4.29 The resultant wave is the 

sum of the individual waves.

two pulses add

two pulses cancel
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Stringed instruments

When you pluck the string of a guitar, a wave reflects backwards and forwards 

along the string. The vibrating string creates the sound that you hear. The pitch of 

the note is related to the frequency of the string (high pitch  high frequency).

 Why are the low notes thick strings?

The speed of the wave is inversely related to the mass per unit length of the 

string. Thick strings have a greater mass per unit length, so the wave will travel 

more slowly in a thick string. If we rearrange the formula v f   , we find that 

f    
v 

 __  so reducing the wave speed will reduce the frequency of the wave.

 Why does shortening the string make the note higher?

Shortening the string reduces the wavelength of the wave. According to the 

formula f    
v
 __ , reducing the wavelength will increase the frequency.

 Why does tightening the string make the note higher?

The wave speed is directly related to the tension in the string. Increasing tension 

increases the wave speed, which, according to the formula f    
v
 __ , will increase 

the frequency of the wave.

Worked example 

1 The A string of a guitar vibrates at 110 Hz. If the wavelength is 153 cm, what is 

the velocity of the wave in the string?

2 A wave in the ocean has a period of 10 s and a wavelength of 200 m. What is the 

wave speed?

Solution

1 v f   

f 110  Hz and 1.53  m  Examiner’s hint: Change cm to m.

 v 110 1.53  m  s 1

 168.3  m  s 1

2 T 10 s

 f  1/T Hz

 0.1 Hz

 v f 

 v  0.1 200  m  s 1

 20  m  s 1

Waves in a spring
If a long soft spring (a slinky) is stretched and one end moved back and forth, a 

compression can be seen to travel along it. Although this may not look like a wave, 

it is transferring energy from one end to the other and so fits the definition.

Relationship between f and 

v  f 

If the frequency is f then the time 

for the wave to progress one cycle 

is 1/f. In this time the wave has 

moved forward a distance equal to 

one wavelength ( ). 

Velocity    
distance

 _______ 
time

  

v    ___ 
1/f

    f 

Figure 4.33 The difference between 

a compression wave in a spring and 

the transverse wave in a string is the 

direction of disturbance.

compression

direction of

disturbance wave direction

rarefaction
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Longitudinal waves

A compression wave in a slinky is an example of a longitudinal wave. In a 

longitudinal wave, the disturbance is parallel to the direction of the wave.

Reflection

When the wave in a spring meets a fixed end, it will reflect.

Interference

Although not easy to observe, when two longitudinal waves meet, the 

displacements superpose in the same way as transverse waves.

Distinguishing longitudinal and transverse

A wave is polarized if the displacement is only in one direction.

The string can only move up and down so a wave in this string will be polarized. 

To test if the wave is polarized we can place another slit on the string; the wave 

only passes if the slits are parallel. Only transverse waves can be polarized, so this 

property can be used to tell if a wave is transverse or longitudinal.

Earthquake waves

An earthquake is caused when parts 

of the Earth’s crust move against 

each other. This disturbance causes 

both longitudinal and transverse 

waves to spread around the Earth.

Transverse wave

When an earthquake occurs the 

ground shakes up and down.

Longitudinal wave

The movement in the Earth’s crust 

compresses the rock.

Light and sound

Both light and sound are 

disturbances that spread out, so 

can be thought of as waves. Light 

can be polarized (for example, by 

Polaroid sunglasses) but sound 

cannot. This is one way to tell that 

light is transverse and sound is 

longitudinal. 

Figure 4.34 Longitudinal wave.

wave direction

direction of

disturbance

Figure 4.35 A wave in a spring is 

reflected off a wall.

Figure 4.36 A string wave can be 

polarized by passing through a narrow 

slit.
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Graphical representation of a wave
There are two ways we can represent a wave graphically, either by drawing a 

displacement–time graph for one point on the wave, or a displacement–position 

graph for each point along the wave.

Displacement–time

Consider point A on the transverse wave in Figure 4.37.

Point A is moving up and down with SHM as the wave passes. At present, it is at a 

minimum of displacement. As the wave progresses past A, this point will move up 

and then down.

We can also draw a graph for point B. This point starts with zero displacement 

then goes up.

Displacement–position

To draw a displacement–position graph, we must measure the displacement of all 

the points on the wave at one moment in time.

Figure 4.40 shows the graph at the same time as the snapshot in Figure 4.37 was 

taken. The position is measured from point O.

This is just like a snapshot of the wave – however, depending on the scale of the 

axis, it might not look quite like the wave.

Note: The event that will happen 

next is to the right on the graph 

but the part of the wave that will 

arrive next is to the left on the 

wave.

Note: Because the horizontal axis 

is time, the separation of the peaks 

represents the time period, not the 

wavelength.

Figure 4.37 A snapshot of a transverse 

wave.

O

A

B

Figure 4.38 The displacement– time 

graph for point A.

displacement

time

A

time period

Figure 4.39 The displacement–time 

graph for point B.

time

displacement

Figure 4.40 The displacement–

position graph for all points at one time.

position

displacement

A
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Longitudinal waves
We can also draw graphs for a longitudinal wave. Consider a chain of balls 

connected with springs. If the red ball on the left were moved back and forth with 

SHM, it would send a longitudinal wave along the chain.

Each ball simply moves back and forth with SHM. Ball A is at present displaced to 

the left. This ball has negative displacement.

Displacement–time

We can draw a displacement–time graph for ball A starting at the time of the 

snapshot in Figure 4.42.

Displacement–position

To draw a displacement–position graph, we must compare the position of each 

ball with its original position.

The red balls have not moved, so their displacement is 0.

The blue balls have moved to the left, so their displacement is negative.

The yellow ball has moved to the right, so its displacement is positive.

ve vezerozero ve zero zero

position

displacement

Figure 4.42 A snapshot taken as a 

wave passes through the chain.

Figure 4.44  The displacement 

position graph for all points on 

the wave.

Figure 4.41 A line of balls joined by 

springs.

Upper row: undisturbed position of balls

Lower row: position of balls at an instant as wave passes

A

Figure 4.43  The displacement–time 

graph for point A.

time

displacement

amplitude

time period 1/f

To see an animated version of this, 

visit heinemann.co.uk/hotlinks, 

enter the express code 4426P and 

click on Weblink 4.3.
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Superposition of one-dimensional waves
When two waves are incident along the same string, we can find the resultant wave 

by adding the individual displacements.

Two-dimensional waves    
We will now use water waves to model the motion of 

waves in 2D. If a disturbance is made by a point object in 

the middle of a tank of water, ripples spread out in circles 

across the tank. We will use pictures from a computer 

simulation to show the effect more clearly.

Wavefront

This is a line joining points that are in phase. The straight 

or circular lines that you can see in the photos are 

wavefronts.

Wave properties4.5

Assessment statements

4.5.1 Describe the reflection and transmission of waves at a boundary 

between two media.

4.5.2 State and apply Snell’s law.

4.5.3 Explain and discuss qualitatively the diffraction of waves at apertures 

and obstacles.

4.5.4 Describe examples of diffraction.

4.5.5 State the principle of superposition and explain what is meant by 

constructive interference and by destructive interference.

4.5.6 State and apply the conditions for constructive and for destructive 

interference in terms of path difference and phase difference.

4.5.7 Apply the principle of superposition to determine the resultant of two 

waves
Ripples spreading out in a circle after 

the surface is disturbed.

Figure 4.45 Superposition of waves. constructive interference

Two in phase waves add

to give a wave of twice

the amplitude.

destructive interference

Two out of phase waves

cancel.
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Rays

Rays are lines drawn to show the direction of the waves  they are always at right 

angles to the wavefront.

Circular wavefronts

A circular wavefront is produced by a point disturbance. The rays are radial, as 

they are perpendicular to the wavefronts.

Plane wavefront

Plane wavefronts are produced by an extended disturbance e.g. a long piece 

of wood dipped into the water, or a point that is so far away that the circles it 

produces look like straight lines.

Reflection
When a wave hits a barrier, it is reflected.

Notice how the reflected wave appears to originate from somewhere on the other 

side of the barrier. This is just the same as the appearance of an image of yourself 

behind a mirror.

A plane wavefront moves towards the beach.

wavefront

ray

Figure 4.46  A circular wavefront 

spreading out from a point. 

wavefrontray

Figure 4.47 Parallel plane wavefronts.

circular wave progressing

towards barrier

circular wave re!ected o"

barrier

Figure 4.48 Reflection of a circular 

wavefront.

To view the PhET simulation Wave 

interference, visit heinemann.co.uk/

hotlinks, enter the express code 

4426P and click on Weblink 4.4. 
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Rather than measuring the angle that the wavefront makes, it is more convenient 

to measure the angles that the rays make with a line drawn at 90° to the barrier. 

This line is called the normal.

The laws of reflection

The laws of reflection describe how waves are reflected from barriers.

 The angle of incidence  the angle of reflection.

 The incident and reflected rays are in the same plane as the normal.

Change of medium

Whenever a wave travels from one medium to another, part of the wave is reflected 

and part transmitted. An example of this is when light hits a glass window: most 

passes through but a fraction is reflected. So you see a reflection of yourself in the 

window and someone standing on the other side of the window can see you. The 

part of the wave that passes through the window is called the transmitted part.

Refraction
When a wave passes from one medium to another, its velocity changes. For 

example, when a water wave passes from deep water into shallow water, it slows 

down. If the wave hits the boundary between the media at an angle, then the wave 

also changes direction.

A
deep

shallow

incident

deep

shallow

refracted wave

Point A on the incident wave hits the 

boundary first, so this part of the wave 

then progresses into the shallow water 

more slowly. The rest of the wave in 

the deep water is still travelling fast 

so catches up with the slow moving 

part, causing the wavefront to change 

direction. This is simpler to see if we 

just draw the rays.

Figure 4.49 A plane wavefront is 

reflected at the same angle that it 

comes in at.

Figure 4.50 Refraction is the change 

of direction when a wave passes from 

one medium to another.

angle of refraction

velocity v1

velocity v2

angle of incidence

Figure 4.51 Angles of incidence and 

refraction.

To view screenshots showing the 

reflected and transmitted wave, 

visit heinemann.co.uk/hotlinks, 

enter the express code 4426P and 

click on Weblink 4.5.
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Snell’s law

Snell’s law relates the angles of incidence and refraction to the ratio of 

the velocity of the wave in the different media. The ratio of the sine of 

the angle of incidence to the sine of the angle of refraction is equal to the 

ratio of the velocities of the wave in the different media. 

  
sin i

 ____ 
sin r

      
v1

 __ v2
  

As can be seen from the example of the bent straw in the photo, light 

refracts when it passes from one medium to another. The ratio of the 

velocity of light in the two media is called the refractive index.

Worked example 

A water wave travelling at 20  m  s 1 enters a shallow region where its velocity is 

15  m  s 1 (Figure 4.52). If the angle of incidence of the water wave to the shallow 

region is 50°, what is the angle of refraction?

50°

15 m s 1

20 m s 1

Solution

  
sin i

 ____ 
sin r

      
v1

 __ v2
      

20
 ___ 

15
   

so sin r    
sin 50°

 ______ 
1.33

    0.576 Applying Snell’s law

r 35.2°

Light reflected off the straw is refracted 

as it comes out of the water causing the 

straw to appear bent.

Refractive index

When light travelling in air is 

refracted by an optical medium, 

the ratio sin i/sin r is called the 

refractive index of the medium. 

If the refractive index is large it 

means that the light is refracted by 

a large angle.

Material Refractive index

Water 1.33

Glass 1.50

Diamond 2.42

Use the refractive indices in the table to solve the following problems.

10 Light travelling through the air is incident on the surface of a pool of water at an angle of 40°. 

Calculate the angle of refraction.

11 Calculate the angle of refraction if a beam of light is incident on the surface of a diamond at an 

angle of 40°.

12 If the velocity of light in air is 3  108 m  s 1, calculate its velocity in glass.

Exercises

Figure 4.52  Always draw a diagram.
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Diffraction
Diffraction takes place when a wave passes through a small opening. If the opening 

is very small, then the wave behaves just like a point source as shown below.

Interference
When two-dimensional waves interfere, the phase difference between the two 

waves is different in different places. This means that in some places the waves add 

and in other places they cancel. This can be seen in the picture below. This shows 

two sources producing waves of the same frequency.

Wave A and B travel

the same distance so

are in phase.

A

Wave C travels half a

wavelength further

than B so is out of

phase.

B

C

If the path difference is a whole number of wavelengths, then the waves are in 

phase.

If the path difference is an odd number of half wavelengths then the waves are out 

of phase.

The effect of interference in two dimensions can be seen in Figure 4.55.

Figure 4.53 If the opening is a bit 

bigger then the effect is not so great.

Water waves diffracting through two 

different sized openings. The waves are 

diffracted more through the narrower 

opening.

Figure 4.54 How phase difference is 

related to path difference. 
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Identical waves from A and B spread out across  

the surface. At X, the waves from A and B have  

travelled the same distance, so are in phase and  

add together. At Y, the wave from B has travelled  

half a wavelength more then the wave from A,  

so the waves are out of phase and cancel out.

Phase angle

If the waves are completely out of phase  

then phase angle  .

If out of phase but not completely out of phase, then the phase angle can be 

calculated from the path difference.

If path difference  d then phase angle     
2 d

 ____ 

Worked example 

Two boys playing in a pool make identical waves that travel towards each other. 

The boys are 10  m apart and the waves have a wavelength 2  m. Their little sister is 

swimming from one boy to the other. When she is 4  m from the first boy, will she 

be in a big wave or a small wave?

Solution

The waves from the boys will interfere when they meet, if the girl is 4  m from the 

first boy, then she must be 6  m from the other. This is a path difference of 2  m, one 

whole wavelength. The waves are therefore in phase and will add.

Examples of waves

Light

It is worth having a more detailed look at the wave properties of light. We have 

seen examples of how light reflects and refracts, and if light is a wave, then it must 

also interfere and diffract.

 Diffraction of light

We have seen that if a wave passes through an opening that is about the same size 

as its wavelength then it will spread out. If a beam of light passes through a narrow 

slit (close to the wavelength of light  around 500 nm), it will spread out.

 Interference of light

Waves only interfere if they have the same frequency and similar amplitude. If we 

take a source of light and split it into two we can create two identical (or coherent) 

wave sources. If the waves from these sources overlap, then areas of bright and 

dark are created, where the waves interfere constructively and destructively.

Figure 4.56  A diagram always helps, 

no matter how silly it is.

The combined effect of diffraction and 

interference causes this pattern of dots 

when laser light passes through a pair 

of narrow slits.

 Figure 4.55  Interference effects seen 

in the PhET simulation. To view this, 

visit heinemann.co.uk/hotlinks, enter 

the express code 4426P and click on 

Weblink 4.6.

13 Two wave sources A and B produce waves of wavelength 2 cm. What is the phase angle between 

the waves at

(a) a point C distance 6 cm from A and 6.2 cm from B?

(b) a point D distance 8 cm from A and 7 cm from B?

(c) a point E distance 10 cm from A and 11.5 cm from B?

Exercise

4 m 6 m
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 Polarization

When light passes through polaroid sunglasses, it becomes polarized in one 

direction. We can test to see if the light is polarized by taking a second piece of 

polaroid and rotating it in front of the sunglasses. As we rotate the polaroid we 

find that the polarized light can only pass when the second piece is in the same 

orientation as the first.

 Wavelength and amplitude of light

Light is an electromagnetic (EM) wave; that is a propagation of 

transverse disturbance in an electric and magnetic field. Unlike the 

other types of waves considered here, EM waves can travel through a 

vacuum. As with all waves, light waves have wavelength and amplitude. 

The wavelength of light can vary from 400 nm to 800 nm, with different 

wavelengths having different colours. White light is made up of all 

colours mixed together, but if white light is passed through a prism, the 

different colours are split up, forming a spectrum. This happens because 

each wavelength refracts by a different amount, and therefore a different 

angle. This is what happens when a rainbow is formed.

Visible light is just one small part of the complete EM spectrum. The 

full range of wavelength is from 10 14m to 104m. Each part of the 

spectrum has different properties and a different name, as illustrated in 

the diagram below.

The amplitude of light is related to its brightness. The brightness of light is how 

we perceive light. The physical quantity that measures it is the light intensity. This 

is proportional to the square of the amplitude.

The speed of EM waves in a vacuum is 2.99  108  m  s 1.

Sound

 Reflection

If you shout in front of a cliff, the sound reflects back as an echo. In fact any  

wall is a good reflector of sound, so when speaking in a room, the sound is 

reflected off all the surfaces This is why your voice sounds different in a room  

and outside.

gamma
rays

X-rays

10 14 10 12 10 10 10 8 10 6 10 4 10 2 1 102 104

ultraviolet
rays

infrared
rays

radar

wavelength (metres)

FM TV AM
shortwave

polaroid 1

polaroid 2

polaroid 3

Figure 4.57 The light passes through 

polaroids 1 and 2, which have the same 

alignment, but not 3.

When we say light is a wave we mean 

it has the same properties as a wave. 

Does this mean it actually is a wave?

White light can be split up into its 

component colours by passing it 

through a prism.

To view the Phet sound waves 

simulation, visit heinemann.co.uk/

hotlinks, enter the express code 

4426P and click on Weblink 4.7.
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 Refraction

When sound passes from warm air into cold air, it refracts. This is why sounds 

carry well on a still night.

The sound travels to the listener by two paths, one direct and one by refraction 

through the layers of air. This results in an extra loud sound.

 Diffraction and interference

Because sound reflects so well off all surfaces, it is very difficult to do sound 

experiments in the laboratory. This makes it difficult to observe sound diffracting 

and interfering.

Sound spreads out when passing through small openings, around obstacles and 

through doorways. However, the effects are often owing to multiple reflections 

rather than diffraction.

Sound has the properties of a wave, so that means we can use our wave theory to 

model sound. Sound is a propagation of disturbance in air pressure. Sound is an 

example of a longitudinal wave. The speed of sound in air is 330  m  s 1.

 Frequency and amplitude of sound

Different frequency sound waves have different pitch (that is, a high note has a 

high frequency). The loudness of a sound is related to the amplitude of the wave.

listener sound source

cold air

warm air Figure 4.58  Sound refracts through 

layers of air.

A room with no echo is called an 

anechoic chamber, and these rooms 

are used for experimenting with sound 

waves. 

Sound waves

cancel.
B

A

Sound waves

add.

Figure 4.60  Owing to interference, 

the sound is loud at A but quiet at B.

microphone

Figure 4.59  The microphone picks 

up sound owing to diffraction. 

Sound

Sound is created when the 

pressure of air is is varied. This 

change in pressure spreads 

out as a longitudinal wave. 

When a sound wave meets a 

microphone, it causes it to vibrate. 

The microphone then changes 

this vibration to an electrical 

signal that can be used to plot a 

graph. The graph that we see is a 

displacement–time graph.

low note high note


