Single Slit Diffraction

Reminder: What is Diffraction?

- Bending and spreading of a wave into a region behind an obstruction
- Examples: waves passing through openings or around corners
- Effects depend on how wide the opening is relative to wave length
- Wide opening: little wave spreading
- Narrow opening: wave fans out, changes shape

- (Wide: opening > wave length;
-Narrow: opening ~ wavelength

Wide gap - small diffraction effect

Diffraction: Why does it occur?

- According to Huygens' principle, each point on a wavefront serves as a source of the next wavefront

- After passing through an aperture, there will be locations where the wavelets interfere constructively and destructively
- http://www.acoustics.salford.ac.uk/feschools/waves/flash/huygens.swf
- With light, this will result in bright and dark fringes

Interference Reminders

- Constructive interference (bright fringes):
-difference in path length $=n \lambda$
-phase difference $=2 n \pi$ radians
- Destructive interference (dark fringes):
-difference in path length $=(n+1 / 2) \lambda$
- phase difference $=(n+1 / 2) \pi$ radians

How single slit pattern is achieved

1. Use monochromatic, uncollimated, incoherent light: - Lens 1 produces parallel wave fronts passing through slit (collimated)

- Lens 2 focuses pattern on screen

2. Use a laser as the source: produces collimated coherent light

Source of monochromatic light located at focal point of lens

Definitions

- Monochromatic light: light waves all have same wavelength (or frequency)
- Collimated light: all waves are parallel to each other
http://en.wikipedia.org/wiki/Collimated light
- Coherent light: constant phase difference between sources of individual waves
- Laser light is coherent
- All wavelets on a given wavefront are, by definition, coherent

Single-slit diffraction pattern

Circular Aperture Diffraction Pattern

- Central maximum is much brighter and wider than the rest
- This pattern is called an Airy disk

That sall, olks!

http://www.youtube.com/watch?v=Wy30R6 fY6W8

Derivation of Single Slit Diffraction Equation: the Setup

REQUIRED DERIVATION!
First dark fringe: occurs for destructive interference

- Consider wavelets arising from the top of the slit and from the center of the slit
- If the difference in path length between the two is $\lambda / 2$, there will be destructive interference, resulting in a dark fringe
- From the geometry

$$
\sin \theta=\frac{\lambda / 2}{b / 2}
$$

- We also consider all of the other symmetrically placed wavelets along entire slit

Derivation (cont.)

- Assuming θ is small: $\sin \theta \approx \theta$
- Final result:

$$
\theta=\lambda / b
$$

Remember: this angle has units of radians!

- This the angular distance from the central maximum to first dark fringe
- It is also half of central maximum angle:
- To find the total angular displacement of the central maximum, multiply by 2

Distance on screen from middle of central maximum to first dark fringe:

$\tan \theta=d / L$

$d=\underline{\text { half-width }}$ of the central maximum projected on the screen
L = distance from slit to screen

If θ is small (as it will be if L >> d), then

$$
\theta \approx d / L
$$

Then $\lambda b \approx d / L$

Single Slit Diffraction Applets

What happens to fringe width
when you change wavelength, slit width, and distance to screen?

- http://www.walter-fendt.de/ph14e/singleslit.htm

- http://surendranath.tripod.com/Applets/Optics/Slits/SingleSli t/SS.html

- http://lectureonline.cl.msu.edu/~mmp/kap27/GaryDiffraction/app.htm

Example Problem \#1

- Light from a laser is used to form a single slit diffraction pattern. The width of the slit is 0.10 mm and the screen is placed 3.0 m from the slit. The width of the central maximum is measured as 2.6 cm . (Hint: this is $2 d$) What is the wavelength of the laser light?

Answer

- Since the screen is far from the slit we can use the small angle approximation such that

$$
d / L=\lambda / b, \text { so } \lambda=d b / L
$$

- d, the half width of the center maximum is 1.3 cm so we have

$$
\begin{aligned}
& \lambda=\left(1.3 \times 10^{-2} \mathrm{~m}\right) \times\left(0.10 \times 10^{-3} \mathrm{~m}\right) / 3.0 \mathrm{~m} \\
& \lambda=430 \times 10^{-9} \mathrm{~m} \text { or } 430 \mathrm{~nm}
\end{aligned}
$$

Example Problem \#2

- Light of $\lambda=500 \mathrm{~nm}$ is diffracted by a single slit 0.05 mm wide. Find the angular position of the $1^{\text {st }}$ minimum. If a screen is placed 2 meters from the slit, find the half-width of the central bright fringe.
- Answer: 0.01 rad; 2 cm

Example Problem \#3

- When light of $\lambda=440 \mathrm{~nm}$ is diffracted through a single slit, the angular position of the $1^{\text {st }}$ minimum is at 0.02 rad. Find the slit width.
- Answer: 0.022 mm

