Waves

Topic 11.1 Standing Waves

Standing Waves

The Formation

 When 2 waves of -the same speed -and wavelength -and equal or almost equal amplitudes -travelling in opposite directions • meet, a standing wave is formed

 The standing wave is the result of the superposition of the two waves travelling in opposite directions

 The main difference between a standing and a travelling wave is that in the case of the standing wave no energy or momentum is transferred down the string

- A standing wave is characterised by the fact that there exists a number of points at which the disturbance is always zero
- These points are called Nodes
- And the amplitudes along the waveform is different
- In a travelling wave there are no points where the disturbance is always zero, all the points have the same amplitude.

At the correct frequency a standing wave is formed

The frequency is increased until a different standing wave is formed

Resonance

- If the frequency of the source of a vibration is exactly equal to the *natural* frequency of the oscillatory system then the system will resonate
- When this occurs the amplitude will get larger and larger
- Pushing a swing is an example of resonance
- Resonance can be useful and harmful

- Airplane wings, engines, bridges, tall buildings are objects that need to be protected against resonance from external vibrations due to wind and other vibrating objects
- Soldiers break step when marching over a bridge in case the force which they exert on the bridge starts uncontrollable oscillations of the bridge

Resonance and Standing Waves

1. Standing Waves on Strings

- If you take a wire and stretch it between two points then you can set up a standing wave
- The travelling waves are reflected to and fro between the two ends of the wire and interfere to produce the standing wave

- This has a node at both ends
- and an antinode in the middle
- •- it is called the fundamental

- With this wave the length of the string is equal to half the wave length
 - $L = \frac{1}{2} \lambda$ • $\therefore \lambda = 2L$
 - As $v = f \lambda$
 - Then $f = v / \lambda$
 - \therefore f = v / 2L
- This is the *fundamental frequency* of the string (the 1st harmonic)

- This is not the only standing wave that can exist on the string
- The next standing wave is

This is called the 2nd Harmonic

- With this wave the length of the string is equal to the wave length
 - $\therefore \lambda = L$ • As v = f λ

• $L = \lambda$

- Then $f = v / \lambda$ • $\therefore f = v / L$
- This is the 2nd Harmonic frequency of the string
- Notice it is twice the fundamental frequency

The next standing wave is

This is called the 3rd Harmonic

- With this wave the length of the string is equal to 3/2 of the wave length
 - L = $3/2 \lambda$
 - $\therefore \lambda = 2/3L$
 - As $v = f \lambda$
 - Then $f = v / \lambda$
 - $\therefore f = v / 2/3L$
 - : f = 3v / 2L
- This is the 3rd Harmonic frequency of the string
- Notice it is three times the *fundamental frequency*

- Notice that the only constraint is that the ends of the string are nodes.
- In general we find that the wavelengths satisfy

 $\lambda = \underline{2L}$

n

Where n = 1,2,3,4.....

- This is the harmonic series
- The *fundamental* is the dominant vibration and will be the one that the ear will hear above all the others
- The harmonics effect the quality of the note
- It is for this reason that different musical instruments sounding a note of the same frequency sound different
- (it is not the only way though)

Resonance and Standing Waves

2. Standing Waves in Pipes

- Sound standing waves are also formed in pipes
- Exactly the same results apply
- There are two types of pipes
 - -1. Open ended
 - -2. Closed at one end
- Nodes exist at closed ends
- Antinodes exists at open ends

a) Open Ended

Fundamental Frequency (1st Harmonic)

 $L = \lambda / 2$

- $\therefore \lambda = 2L$
- •As $v = f \lambda$
- •Then $f = v / \lambda$
 - \therefore f = v / 2L

• 2nd Harmonic

• $\therefore \lambda = L$ •As $v = f \lambda$ •Then $f = v / \lambda$ • $\therefore f = v / L$

 $L = \lambda$

• 3rd Harmonic

 $L = 3/2\lambda$

- $\therefore \lambda = 2/3L$
 - •As $v = f \lambda$
- •Then f = v / λ
- \therefore f = v / 2/3L
- : f = 3v / 2L

- The harmonics are in the same series as the string series
- If the fundamental frequency = f
- Then the 2nd harmonic is 2f, 3rd is 3f and the 4th is 4f... etc

b) Closed at one End

Fundamental Frequency (1st Harmonic)

$$L = \lambda / 4$$

- •As $v = f \lambda$
- •Then f = v / λ
 - \therefore f = v / 4L

Next Harmonic

 $L = 3/4\lambda$

•
$$\therefore \lambda = 4/3L$$

- •As $v = f \lambda$
- •Then f = v / λ
- : f = v / 4/3L
- : f = 3v / 4L

And the next harmonic

 $L = 5/4\lambda$

- $\therefore \lambda = 4/5L$
 - •As $v = f \lambda$
- •Then f = v / λ
- : f = v / 4/5L
- : f = 5v / 4L

- The harmonics are DIFFERENT to the string and open pipe series
- If the fundamental frequency = f
- Then there is no 2nd harmonic
- The 3rd is 3f
- There is no 4th harmonic
- The 5th is 5f