HAPTER X8

Standing waves

_ AHL - Oscillations and waves
SL Option A - Sight and wave phenomena

A special wave is formed when two ordinary identical waves travelling in opposite
directions meet. The result is a standing (stationary) wave: a wave in which the crests

do not move.

Objectives
By the end of this chapter you should be able to:

« state the differences between a standing wave and a travelling wave;

« describe how a standing wave is formed;

* draw the various harmonics on strings and tubes and find the wavelength in

terms of the string or tube length;

* state the meaning of the terms fundamental and harmonics;

* state the meaning of the term resonance;
solve problems with standing waves,

Standing waves on strings
and tubes

» When two waves of the same speed and
wavelength and equal or almost equal
amplitudes travelling in opposite directions
meet, a standing wave is formed. This
interesting wave is the result of the
superposition of the two waves travelling in
opposite directions.

The main difference between a standing wave
and a travelling wave is that in the former no
energy or momentum is transferred. A standing
wave is characterized by having a number of
points at which the displacement is always zero.
These are called nodes. (In a travelling wave,
there are no points where the displacement is
always zero.) The points at which the
displacement is a maximum are called
antinodes. (Note that the nodes always have
zero displacement whereas the antinodes are at

maximum displacement for an instant of time
only,) In Figure 6.1 a string of length L has been
plucked in the middle and is about to be
released.
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Figure 6.1 A standing wave on a string with both
ends fixed. The string is held in this position
and then released. A standing wave like this
with a single antinode is known as a
fundamental standing wave.

Successive pictures of the string will then look
like Figure 6.2: the end points of the string
remain fixed at all times (nodes) but the rest
of the string oscillates. The middle point is

the point on the string with the largest
displacement (antinode). The string will return
to its original position after a time equal to the
period of the wave. In the absence of friction,
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Figure 6.2 Positions of the string at various time
intervals after being released. The dark circles
show the positions of the nodes. The dotted line
shows the position of the antinode.

this oscillation will continue forever. When the
string is in its original position (f = 0) all the
energy of the wave is in the form of potential
energy of the stretched string. When the string
assumes its undisturbed position, all the energy
is in the form of kinetic energy. At all other
positions the energy of the string consists of
both potential and kinetic energy. Note that the
crest of this wave (i.e. the antinode) does not
move to the right or left as a crest does in a
travelling wave.

The standing wave depicted above has a specific
wavelength. Note that we have fitted half a full
wave on the length of the string. This means that

7=t

=i=2L

The wave with A = 2L is not the only standing
wave that can exist on this string, however.
Figure 6.3 shows the next standing wave. Note

>

L
Figure 6.3 A standing wave with three nodes and
two antinodes. A standing wave like this is
known as the second harmonic.

that the only constraint we have is that the
ends of the string are nodes. Here, we have
fitted one full wave on the string. Thus, 2 = L.
This standing wave has three nodes and two
antinodes.

An infinity of standing waves can thus exist on
the string by *fitting’ waves with the constraint
that the ends are nodes. The next standing wave
is shown in Figure 6.4.

Figure 6.4 A standing wave with four nodes and
three antinodes. A standing wave like this is
known as the third harmonic.

For the third harmonic, we have fitted one and
a half full waves on the string. Thus,

.
3
In general, we find that the wavelengths satisfy
2L
A=—, n=12,73,.4,...
n

The wave with wavelength corresponding to

n =1 is called the fundamental mode of the
string or the first harmonic. All other modes
are called higher harmonics. So, for example,
the mode with n = 3 is the third harmonic. The
fundamental mode has the largest wavelength
and thus the smallest frequency (f = . where
v is the speed of the wave).

p If 1 is the fundamental’s frequency, then
all other harmonics have frequencies that
are integral multiples of f,.

Note that the distance between two
successive nodes is half a wavelength, The
same is true for successive antinodes. The
distance between a node and the next
antinode is a quarter of a wavelength.
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Figure 6.5 shows that particles between two
consecutive nodes move in the same direction.
Particles between the adjacent pair of nodes
move in the opposite direction.

Figure 6.5 All points between two consecutive
nodes are in phase: that is to say, they move in
the same direction. They differ in phase by 180
with those between the next pair of nodes,
which are moving in the opposite way.

If one end of the string is free and the other
fixed, then the free end must be an antinode
and the fixed end a node. The allowed
wavelengths are then

4L
=—, n=13,5,...
(Here n is an odd integer.) Examples of these

standing waves are shown in Figures 6.6-6.8.

You must convince yourself that the wavelengths
of these harmonics are indeed those given by
the formulax =3 n=1.3.5....

Figure 6.6 The fundamental standing wave on a
string with one end fixed and the other free.

Figure 6.7 The second harmonic.

Figure 6.8 The third harmonic.

When both ends are free, the condition is

A m % n= 1,2.3.4...‘
n

The situation here is entirely analogous to that
with both ends fixed with the roles of node and
antinode interchanged (see Figure 6.9).

Figure 6.9 Standing waves on a string with both
ends free are similar to those for both ends
fixed except that nodes and antinodes are
interchanged. The fundamental and second
harmonic are shown here.

We have discussed standing waves exclusively in
terms of waves on a string whose ends are fixed
or free. Exactly the same results apply to sound
standing waves formed in a pipe (such as a
musical instrument) whose ends are open
(corresponding to free string ends) or closed
(corresponding to fixed string ends) - see
Figure 6.10. Nodes exist at closed ends and
antinodes at open ends.

I I
(a) left end (mouth) is (b) left end (mouth) is
open, right end is closed  open, right end is open

Figure 6.10 (a) A pipe with one end closed and one
open. (b) A pipe with both ends open.
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Supplementary material

Nodes in this case correspond to points in the
pipe where the air molecules are not moving
whereas antinodes correspond to points where
the air molecules move with maximum
displacement (see Figure 6.11). These are called
displacement nodes and antinodes. Note,
however, that at a displacement node the
pressure of the gas varies the most (i.e. we have
a pressure antinode), and at a displacement
antinode the pressure variation is zero (i.e. we
have a pressure node).

Figure 6.11 Air molecules in the pipe vibrate the
most at antinodes and not at all at nodes.

You don’t need to memorize the formulae for
wavelength in terms of string or tube length.
Rather, you should note that in all cases the
distance between successive nodes or antinodes
is half a wavelength and that the distance
between a node and the next antinode is a
quarter of a wavelength. This should allow you
to figure out what kind of standing wave you
can fit in the particular case you are examining.
We see from these formulae that, as the length
of the tube becomes smaller, the allowed
wavelengths also get smaller, which means that
the corresponding frequencies get larger. This is
seen when you put a bottle under a tap and
start to fill it with water. The falling water
excites a standing wave in the bottle whose
length of air column is getting smaller as the
bottle fills. This means that the frequency of
the sound emitted by the bottle becomes high
pitched, as we know from experience.

Example questions
QT S R
A standing wave is set up on a string kept under
tension T. What must be done to the tension in

order to double the fundamental frequency of the
wave?

Answer

Since f = ¢, and the wavelength is fixed in terms
of the length of the string 4 = 2L, we can double
f by doubling the velocity of the wave. This
means that the tension must increase by 4.

Q2 e e e e e B
What is the ratio of the frequencies of the
fundamental to the second harmonic for a
standing wave set up on a string, both ends of
which are kept fixed?

Answer

The frequencies are

. v .
fo=— and f=—
2L L
hence
rll _ l
f, 2

(@) s s S S S e e e S s )
A tube has one end open and the other closed.
What is the ratio of the wavelengths of the
fundamental to the second harmonic?

Answer

The fundamental and second harmonic have
wavelengths

4L
Ap=4L and i, =—
3
hence
ho_y
A

Q4 e R e e e A0
A standing wave is set up in a tube with both
ends open. The frequency of the fundamental is
300 Hz. What is the length of the tube? Take the
speed of sound to be 340 ms .

Answer

The wavelength is

The fundamental’s wavelength is equal to 21 and
so L =057 m.
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Resonance and the speed
of sound

When a vibrating tuning fork is brought near to
the end of a long tube partially filled with water,
a buzzing sound may be heard from the tube.
When that happens, addition of more water in
the tube will ruin the effect. This is an example
of resonance. The tuning fork will excite the air
in the tube and force it to vibrate with a
frequency equal to the tuning fork's frequency.
The amplitude of this standing wave will be
appreciable, though, only if the frequency of the
standing wave that the tube can support is equal
to the tuning fork’s frequency. When these two
frequencies are the same, we hear the buzzing
sound from the tube. Pouring more water in the
tube changes the frequency of the tube and so
the amplitude is now very small - no sound is
heard from the tube.

This actually provides a simple method for
measuring the speed of sound in air. A set of
tuning forks of known frequencies are each
sounded over a column of air in a long tube
partially filled with water. The height of the
column of water is adjusted (by pouring water in
or out) until resonance is obtained (i.e. the tube
emits a sound). The corresponding height of the
air column and the frequency are recorded and
this is repeated with the other tuning forks. The
standing wave inside the tube must have a
wavelength such that » = 4L, where L is the
length of the air column. But /. = %, where [ is
the corresponding frequency, which equals the
known frequency of the tuning fork. Thus, v,
which is the speed of sound, can be determined
by repeating this procedure for various different
tuning forks and then plotting L versus 1/f.
One must get a straight line with slope v /4.

Supplementary material

This discussion ignores end corrections. End
corrections are necessary in practice because
the standing wave may have a wavelength that
does not satisfy f = L butrather 2 = [ + ¢,

where e is a constant depending on the diameter
of the tube. In an experiment to measure the
speed of sound by resonance the end correction
must be included.

Resonance is a general phenomenon. It occurs
whenever a system that is capable of oscillation
or vibration is subjected to an external
disturbance with a frequency equal to the
natural frequency of the system itself. In that
case, the system oscillates with a large
amplitude. If the frequencies do not match, the
system still vibrates but the amplitude is very
small. Clearly, resonance can be a dangerous
phenomenon. A system that is set into vibration
by something external and develops large
amplitudes may eventually break or fall apart.
Aeroplane wings, engines, bridges, tall
buildings, etc., must all be protected against
resonance from external vibrations due to
wind, other vibrating objects, etc. Soldiers
always break their step when walking over a
bridge, in case the force that they exert on the
bridge starts uncontrollable oscillations of the
bridge. An earthquake may set a building into
oscillation if the frequency of the longitudinal
wave created by the earthquake is equal to the
natural frequency of vibration of the building.
This frequency is 5, where c is the speed of
sound in the structure of the building and L is
its height. (See Figures 6.12-6.14.)

il , i
Figure 6.12 The Tacoma Narrows bridge collapsed
in 1940, a victim of resonant failure.
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wavelength of
fundamental is 2

Figure 6.13 A
a standing wave mode if the frequency of the

earthquake wave matches the natural frequency

of oscillation of the building.

Figure 6.14 The severe earthquake that struck
northern Turkey in August 1999 released vast
amounts of energy. Hundreds of buildings
toppled and tens of thousands of people were
killed.

Questions

1 Describe what is meant by a standing wave.

In what ways does a standing wave differ from

a travelling wave?
2 How is a standing wave formed?
3 In the context of standing waves describe
what is meant by:
(a) node;
(b) antinode.

4 Describe how you would arrange for a string
that is kept under tension, with both ends

building will be made to oscillate in

6

7

8

10

11

12

fixed, to vibrate in its second harmonic mode.
Draw the shape of the string when it is
vibrating in its second harmonic mode.
Explain what is meant by resonance and give
two examples where it occurs.

Car drivers occasionally experience a ‘shaking
steering wheel” when travelling at a particular
speed. The shaking disappears at lower or
higher speeds. Suggest a reason for this
observation.

A string is held under tension, with both ends
fixed, and has a fundamental frequency of
250 Hz. If the tension is doubled, what will
the new frequency of the fundamental

mode be?

A string has both ends fixed. What is the ratio
of the frequencies of the first to the second
harmonic?

The fundamental mode on a string with both

ends fixed is 500 Hz. What will the frequency

become if the tension in the string is increased

by 20%?

The wave velocity of a transverse wave on a

string of length 0.500 m is 225 ms~'.

(a) What is the fundamental frequency of a
standing wave on this string if both ends
are kept fixed?

(b) While this string is vibrating in the
fundamental harmonic, what is the
wavelength of sound produced in air?

(Take the speed of sound in air to be 330 ms™'.)

Figure 6.15 shows a tube with one end open

and the other closed. Draw the standing wave

representing the third harmonic standing wave
in this tube.

Figure 6.15 For question 11.

A glass tube is closed at one end. The air
column it contains has a length that can be
varied between 0.50 m and 1.50 m. If a
tuning fork of frequency 306 Hz is sounded at
the top of the tube, at which lengths of the air
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13

14

15

16

column would resonance occur? (Take the

speed of sound to be 330 ms™'.)

A glass tube with one end open and the other

closed is used in a resonance experiment to

determine the speed of sound. A tuning fork

of frequency 427 Hz is used and resonance

is observed for air column lengths equal to

17.4 cm and 55.0 cm.

(a) What speed of sound does this experiment
give?

(b) What is the end correction for this tube?

A tube with both ends open has two

consecutive harmonics of frequency 300 Hz

and 360 Hz.

(a) What is the length of the tube?

(b) What are the harmonics?

(Take the speed of sound to be 330 ms~'.)

A string of length 0.50 m is kept under a tension

of 90.0 N and vibrates in its fundamental mode.

The mass of the string is 3.0 g.

(a) What is the frequency of the sound emitted?
(Take the speed of sound to be 330 ms='.)

(b) The same string now vibrates in water.
What is the wavelength of the sound
emitted? (Take the speed of sound in water
to be 1500 ms~'.)

A container of water of length 12 cm is placed

on top of a vibration generator (Figure 6.16).

When the generator is turned on, the water in

the container sloshes back and forth.

® 1 &

feseselealatelaseeTatetututeteeute e el
Figure 6.16 For question 16.

e

When the frequency is adjusted to about

0.75 Hz, the water actually spills out of the

container.

(a) Suggest a reason for this.

(b) Estimate the speed of water waves in the
container.

17

18

19

Do the following experiment at home. Take a

styrofoam cup (top diameter approximately

8 em) and fill it with cold coffee or tea. Now

drag it slowly over a surface that is neither too

smooth nor too rough, for example a kitchen
counter.

(a) Observe and explain what you see on the
surface of the liquid as the speed at which
you drag the cup is varied.

(b) Knowing that the speed of water waves in
the cup is about 15 m s~', estimate the
frequency that makes the water vibrate.

(c) Is this frequency related to the speed of
the cup?

Consider a string with both ends fixed.

A standing wave in the second harmonic

mode is established on the string, as

shown in Figure 6.17. The speed of the wave

is 180ms™".

(a) Explain the meaning of wave speed in the
context of standing waves.

(b) Consider the vibrations of two points on

the string, P and Q. The displacement

of point P is given by the equation y =

5.0 cos (4571), where y is in mm and ¢

is in seconds. Calculate the length of the

string.

State the phase difference between the

oscillation of point P and that of point Q.

Hence write down the equation giving the

displacement of point Q.

(c

Figure 6.17 For question 18.

A sound wave of wavelength 1.7 m passes
through air, where the speed of sound is

330 m s~'. Assume that a molecule of air

has mass 4.8 x 107 kg and that, as a result
of the sound wave, it oscillates with an
amplitude of 4.0 x 1077 m. Calculate the
maximum kinetic energy of the molecule due
to its oscillations.
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20 A string with both ends fixed vibrates in the (b) The amplitude of oscillation of point P is
third harmonic mode, as shown in Figure 4.0 mm. Explain why the displacement of
6.18. The length of the string is 6.0 m and the point P is given by the equation
speed of the wave is 120 m s, y = 4.0 cos(60x 1), where y is in

millimetres and tis in seconds.
The amplitude of oscillation of points
Q and R is 2.0 mm. State the equation
giving the displacement of (i) point Q and
; | (ii) point R.

| (d) Calculate the average speed of (i) point
Figure 6.18 For question 20. : P and (i) point Q fromto t=0tot = I,

4

(c

where T is the period of the wave.
(e) Calculate the maximum speed of (i) point
P and (ii) point Q.

(a) Calculate the wavelength of the wave on
the string.
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